↓ Skip to main content

Nicotinic acetylcholine receptors modulate osteoclastogenesis

Overview of attention for article published in Arthritis Research & Therapy, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nicotinic acetylcholine receptors modulate osteoclastogenesis
Published in
Arthritis Research & Therapy, March 2016
DOI 10.1186/s13075-016-0961-x
Pubmed ID
Authors

Peter Mandl, Silvia Hayer, Thomas Karonitsch, Petra Scholze, David Győri, Despoina Sykoutri, Stephan Blüml, Attila Mócsai, Gyula Poór, Sigismund Huck, Josef S. Smolen, Kurt Redlich

Abstract

Our aim was to investigate the role of nicotinic acetylcholine receptors (nAChRs) in in-vitro osteoclastogenesis and in in-vivo bone homeostasis. The presence of nAChR subunits as well as the in-vitro effects of nAChR agonists were investigated by ex vivo osteoclastogenesis assays, real-time polymerase chain reaction, Western blot and flow cytometry in murine bone marrow-derived macrophages differentiated in the presence of recombinant receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). The bone phenotype of mice lacking various nAChR subunits was investigated by peripheral quantitative computed tomography and histomorphometric analysis. Oscillations in the intracellular calcium concentration were detected by measuring the Fura-2 fluorescence intensity. We could demonstrate the presence of several nAChR subunits in bone marrow-derived macrophages stimulated with RANKL and M-CSF, and showed that they are capable of producing acetylcholine. nAChR ligands reduced the number of osteoclasts as well as the number of tartrate-resistant acidic phosphatase-positive mononuclear cells in a dose-dependent manner. In vitro RANKL-mediated osteoclastogenesis was reduced in mice lacking α7 homomeric nAChR or β2-containing heteromeric nAChRs, while bone histomorphometry revealed increased bone volume as well as impaired osteoclastogenesis in male mice lacking the α7 nAChR. nAChR ligands inhibited RANKL-induced calcium oscillation, a well-established phenomenon of osteoclastogenesis. This inhibitory effect on Ca(2+) oscillation subsequently led to the inhibition of RANKL-induced NFATc1 and c-fos expression after long-term treatment with nicotine. We have shown that the activity of nAChRs conveys a marked effect on osteoclastogenesis in mice. Agonists of these receptors inhibited calcium oscillations in osteoclasts and blocked the RANKL-induced activation of c-fos and NFATc1. RANKL-mediated in-vitro osteoclastogenesis was reduced in α7 knockout mice, which was paralleled by increased tibial bone volume in male mice in vivo.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 6 19%
Student > Bachelor 6 19%
Student > Ph. D. Student 6 19%
Researcher 3 9%
Other 2 6%
Other 3 9%
Unknown 6 19%
Readers by discipline Count As %
Medicine and Dentistry 9 28%
Biochemistry, Genetics and Molecular Biology 7 22%
Pharmacology, Toxicology and Pharmaceutical Science 4 13%
Agricultural and Biological Sciences 2 6%
Economics, Econometrics and Finance 1 3%
Other 2 6%
Unknown 7 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 March 2016.
All research outputs
#20,655,488
of 25,373,627 outputs
Outputs from Arthritis Research & Therapy
#2,907
of 3,381 outputs
Outputs of similar age
#233,757
of 315,301 outputs
Outputs of similar age from Arthritis Research & Therapy
#35
of 43 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,381 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.2. This one is in the 7th percentile – i.e., 7% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,301 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one is in the 4th percentile – i.e., 4% of its contemporaries scored the same or lower than it.