↓ Skip to main content

Radix Sophorae flavescentis versus other drugs or herbs for chronic hepatitis B

Overview of attention for article published in Cochrane database of systematic reviews, June 2019
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)

Mentioned by

twitter
3 tweeters
facebook
1 Facebook page

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Radix Sophorae flavescentis versus other drugs or herbs for chronic hepatitis B
Published in
Cochrane database of systematic reviews, June 2019
DOI 10.1002/14651858.cd013106.pub2
Pubmed ID
Authors

Ning Liang, De Zhao Kong, Chun Li Lu, Si Si Ma, Yu Qi Li, Dimitrinka Nikolova, Janus C Jakobsen, Christian Gluud, Jian Ping Liu

Abstract

Hepatitis B virus (HBV) infection is a liver disease caused by hepatitis B virus, which may lead to serious complications such as cirrhosis and hepatocellular carcinoma. People with HBV infection may also have coinfections including HIV and other hepatitis viruses (hepatitis C or D), and coinfections may increase the risk of all-cause mortality. Chronic HBV infection increases morbidity, psychological stress, and it is an economic burden on people with chronic hepatitis B and their families. Radix Sophorae flavescentis, a herbal medicine, is administered mostly in combination with other drugs or herbs. It is believed that it decreases discomfort and prevents the replication of the virus in people with chronic hepatitis B. However, the benefits and harms of Radix Sophorae flavescentis on patient-centred outcomes are unknown, and its wide usage has never been established with rigorous review methodology. To assess the benefits and harms of Radix Sophorae flavescentis versus other drugs or herbs in people with chronic hepatitis B. We searched The Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE, Embase, and seven other databases to December 2018. We also searched the World Health Organization International Clinical Trials Registry Platform (www.who.int/ictrp), ClinicalTrials.gov (www.clinicaltrials.gov/), and the Chinese Clinical Trial Registry for ongoing or unpublished trials to December 2018. We included randomised clinical trials, irrespective of publication status, language, or blinding, comparing Radix Sophorae flavescentis versus other drugs or herbs for people with chronic hepatitis B. In addition to chronic hepatitis B, participants could also have had cirrhosis, hepatocellular carcinoma, or any other concomitant disease. We excluded polyherbal blends containing Radix Sophorae flavescentis. We allowed cointerventions when the cointerventions were administered equally to all intervention groups. Review authors in pairs individually retrieved data from published reports and after correspondence with investigators. Our primary outcomes were all-cause mortality, serious adverse events, and health-related quality of life. Our secondary outcomes were hepatitis B-related mortality, hepatitis B-related morbidity, and adverse events considered 'not to be serious'. We presented the meta-analysed results as risk ratios (RR) with 95% confidence intervals (CI). We assessed the risk of bias using domains with predefined definitions. We conducted Trial Sequential Analyses to control the risks of random errors. We used GRADE methodology to evaluate our certainty in the evidence (i.e. "the extent of our confidence that the estimates of the effect are correct or are adequate to support a particular decision or recommendation"). We included 10 randomised clinical trials with 898 participants. We judged all trials at high risk of bias. The trials covered oral capsules, intravenous infusion, intramuscular injection, and acupoint (a specifically chosen site of acupuncture) injection of Radix Sophorae flavescentis with a follow-up period from 1 to 12 months. The drugs being used as a comparator were lamivudine, adefovir, interferon, tiopronin, thymosin, or other Chinese herbs. Two trials included children up to 14 years old. Participants in one trial had cirrhosis in chronic hepatitis B. None of the trials reported all-cause mortality, health-related quality of life, serious adverse events, hepatitis B-related mortality, or morbidity. We are uncertain as to whether Radix Sophorae flavescentis has a beneficial or harmful effect on adverse events considered 'not to be serious' (RR 0.86, 95% CI 0.42 to 1.75; I2 = 0%; 2 trials, 163 participants; very low-certainty evidence), as well as if it decreases or increases the proportion of participants with detectable HBV-DNA (RR 1.14, 95% CI 0.81 to 1.63; I2 = 92%; 8 trials, 719 participants; very low-certainty evidence). Radix Sophorae flavescentis showed a reduction in the proportion of participants with detectable hepatitis B virus e-antigen (HBeAg) (RR 0.86, 95% CI 0.75 to 0.98; I2 = 43%; 7 trials, 588 participants; very low-certainty evidence).Two of the 10 trials were not funded, and one received academic funding. The remaining seven trials provided no information on funding.The randomisation process in another 109 trials was insufficiently reported to ensure the inclusion of any of these studies in our review. The included trials lacked data on all-cause mortality, health-related quality of life, serious adverse events, hepatitis-B related mortality, and hepatitis-B related morbidity. The evidence on the effect of Radix Sophorae flavescentis on the proportion of participants with adverse events considered 'not to be serious' and on the proportion of participants with detectable HBV-DNA is still unclear. We advise caution regarding the results of Radix Sophorae flavescentis showing a reduction in the proportion of people with detectable HBeAg because the trials were at high risk of bias, because it is a non-validated surrogate outcome, and because of the very low certainty in the evidence. As we were unable to obtain information on a large number of studies regarding their trial design, we were deterred from including them in our review. Undisclosed funding may have influence on trial results and lead to poor design of the trial. In view of the wide usage of Radix Sophorae flavescentis, we need large, unbiased, high-quality placebo-controlled randomised trials assessing patient-centred outcomes.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 24%
Researcher 5 17%
Student > Master 5 17%
Unspecified 2 7%
Other 1 3%
Other 2 7%
Unknown 7 24%
Readers by discipline Count As %
Medicine and Dentistry 6 21%
Nursing and Health Professions 6 21%
Social Sciences 2 7%
Unspecified 2 7%
Mathematics 1 3%
Other 3 10%
Unknown 9 31%

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 September 2019.
All research outputs
#7,171,785
of 13,663,325 outputs
Outputs from Cochrane database of systematic reviews
#8,032
of 10,703 outputs
Outputs of similar age
#108,538
of 250,200 outputs
Outputs of similar age from Cochrane database of systematic reviews
#31
of 34 outputs
Altmetric has tracked 13,663,325 research outputs across all sources so far. This one is in the 47th percentile – i.e., 47% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,703 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.2. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 250,200 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.