↓ Skip to main content

The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to γ-rays and/or erlotinib

Overview of attention for article published in Cell Biology and Toxicology, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to γ-rays and/or erlotinib
Published in
Cell Biology and Toxicology, March 2016
DOI 10.1007/s10565-016-9319-z
Pubmed ID
Authors

Otilija Keta, Tanja Bulat, Igor Golić, Sebastien Incerti, Aleksandra Korać, Ivan Petrović, Aleksandra Ristić-Fira

Abstract

In most patients with lung cancer radiation treatment is used either as single agent or in combination with radiosensitizing drugs. However, the mechanisms underlying combined therapy and its impact on different modes of cell death have not yet been fully elucidated. We aimed to examine effects of single and combined treatments with γ-rays and erlotinib on radioresistant CRL-5876 human lung adenocarcinoma cells with particular emphasis on cell death. CRL-5876 cells were treated with γ-rays and/or erlotinib and changes in cell cycle, DNA repair dynamics, ultrastructure, nuclear morphology and protein expression were monitored at different time points. To reveal the relationship between types of cell death that arise after these treatments, autophagy was blocked with chloroquine. We found that higher dose of γ-rays causes G2/M arrest while adding of erlotinib to this treatment decreases the number of cells in S phase. Impact of erlotinib on kinetics of disappearance of irradiation-induced DNA double strand breaks is reflected in the increase of residual γ-H2AX foci after 24 h. γ-rays provoke cytoprotective autophagy which precedes development of senescence. Erlotinib predominantly induces apoptosis and enlarges the number of apoptotic cells in the irradiated CRL-5876 cells. Chloroquine improved cytotoxicity induced by radiation and erlotinib, increased apoptosis and decreased senescence in the CRL-5876 cells. The results obtained on CRL-5876 cells indicate significant radiosensitizing effect of erlotinib and suggest that chloroquine in the combination with the above treatments may have an additional antitumor effect in lung adenocarcinoma.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 17%
Professor 2 11%
Other 1 6%
Student > Doctoral Student 1 6%
Student > Ph. D. Student 1 6%
Other 3 17%
Unknown 7 39%
Readers by discipline Count As %
Physics and Astronomy 4 22%
Agricultural and Biological Sciences 2 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Biochemistry, Genetics and Molecular Biology 1 6%
Immunology and Microbiology 1 6%
Other 1 6%
Unknown 8 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2016.
All research outputs
#20,317,110
of 22,858,915 outputs
Outputs from Cell Biology and Toxicology
#411
of 484 outputs
Outputs of similar age
#254,996
of 300,926 outputs
Outputs of similar age from Cell Biology and Toxicology
#11
of 12 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 484 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,926 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.