↓ Skip to main content

Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice

Overview of attention for article published in Nature Communications, September 2019
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (95th percentile)

Mentioned by

5 news outlets
41 tweeters
3 Facebook pages


60 Dimensions

Readers on

166 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice
Published in
Nature Communications, September 2019
DOI 10.1038/s41467-019-11866-7
Pubmed ID

Claudia P. Figueiredo, Fernanda G. Q. Barros-Aragão, Rômulo L. S. Neris, Paula S. Frost, Carolina Soares, Isis N. O. Souza, Julianna D. Zeidler, Daniele C. Zamberlan, Virginia L. de Sousa, Amanda S. Souza, André Luis A. Guimarães, Maria Bellio, Jorge Marcondes de Souza, Soniza V. Alves-Leon, Gilda A. Neves, Heitor A. Paula-Neto, Newton G. Castro, Fernanda G. De Felice, Iranaia Assunção-Miranda, Julia R. Clarke, Andrea T. Da Poian, Sergio T. Ferreira


Neurological complications affecting the central nervous system have been reported in adult patients infected by Zika virus (ZIKV) but the underlying mechanisms remain unknown. Here, we report that ZIKV replicates in human and mouse adult brain tissue, targeting mature neurons. ZIKV preferentially targets memory-related brain regions, inhibits hippocampal long-term potentiation and induces memory impairment in adult mice. TNF-α upregulation, microgliosis and upregulation of complement system proteins, C1q and C3, are induced by ZIKV infection. Microglia are found to engulf hippocampal presynaptic terminals during acute infection. Neutralization of TNF-α signaling, blockage of microglial activation or of C1q/C3 prevent synapse and memory impairment in ZIKV-infected mice. Results suggest that ZIKV induces synapse and memory dysfunction via aberrant activation of TNF-α, microglia and complement. Our findings establish a mechanism by which ZIKV affects the adult brain, and point to the need of evaluating cognitive deficits as a potential comorbidity in ZIKV-infected adults.

Twitter Demographics

The data shown below were collected from the profiles of 41 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 166 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 166 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 33 20%
Student > Ph. D. Student 24 14%
Student > Master 22 13%
Researcher 20 12%
Professor 8 5%
Other 27 16%
Unknown 32 19%
Readers by discipline Count As %
Neuroscience 28 17%
Biochemistry, Genetics and Molecular Biology 23 14%
Immunology and Microbiology 20 12%
Agricultural and Biological Sciences 18 11%
Medicine and Dentistry 14 8%
Other 19 11%
Unknown 44 27%

Attention Score in Context

This research output has an Altmetric Attention Score of 62. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 August 2021.
All research outputs
of 18,950,555 outputs
Outputs from Nature Communications
of 37,585 outputs
Outputs of similar age
of 275,865 outputs
Outputs of similar age from Nature Communications
of 1 outputs
Altmetric has tracked 18,950,555 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 37,585 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 53.3. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,865 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them