↓ Skip to main content

MM2S: personalized diagnosis of medulloblastoma patients and model systems

Overview of attention for article published in Source Code for Biology and Medicine, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MM2S: personalized diagnosis of medulloblastoma patients and model systems
Published in
Source Code for Biology and Medicine, April 2016
DOI 10.1186/s13029-016-0053-y
Pubmed ID
Authors

Deena M.A. Gendoo, Benjamin Haibe-Kains

Abstract

Medulloblastoma (MB) is a highly malignant and heterogeneous brain tumour that is the most common cause of cancer-related deaths in children. Increasing availability of genomic data over the last decade had resulted in improvement of human subtype classification methods, and the parallel development of MB mouse models towards identification of subtype-specific disease origins and signaling pathways. Despite these advances, MB classification schemes remained inadequate for personalized prediction of MB subtypes for individual patient samples and across model systems. To address this issue, we developed the Medullo-Model to Subtypes ( MM2S ) classifier, a new method enabling classification of individual gene expression profiles from MB samples (patient samples, mouse models, and cell lines) against well-established molecular subtypes [Genomics 106:96-106, 2015]. We demonstrated the accuracy and flexibility of MM2S in the largest meta-analysis of human patients and mouse models to date. Here, we present a new functional package that provides an easy-to-use and fully documented implementation of the MM2S method, with additional functionalities that allow users to obtain graphical and tabular summaries of MB subtype predictions for single samples and across sample replicates. The flexibility of the MM2S package promotes incorporation of MB predictions into large Medulloblastoma-driven analysis pipelines, making this tool suitable for use by researchers. The MM2S package is applied in two case studies involving human primary patient samples, as well as sample replicates of the GTML mouse model. We highlight functions that are of use for species-specific MB classification, across individual samples and sample replicates. We emphasize on the range of functions that can be used to derive both singular and meta-centric views of MB predictions, across samples and across MB subtypes. Our MM2S package can be used to generate predictions without having to rely on an external web server or additional sources. Our open-source package facilitates and extends the MM2S algorithm in diverse computational and bioinformatics contexts. The package is available on CRAN, at the following URL: https://cran.r-project.org/web/packages/MM2S/, as well as on Github at the following URLs: https://github.com/DGendoo and https://github.com/bhklab.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 6%
Unknown 16 94%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 29%
Researcher 4 24%
Lecturer 2 12%
Student > Bachelor 2 12%
Librarian 1 6%
Other 0 0%
Unknown 3 18%
Readers by discipline Count As %
Medicine and Dentistry 5 29%
Computer Science 4 24%
Biochemistry, Genetics and Molecular Biology 2 12%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Earth and Planetary Sciences 1 6%
Other 1 6%
Unknown 3 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 April 2016.
All research outputs
#13,900,658
of 23,577,761 outputs
Outputs from Source Code for Biology and Medicine
#65
of 127 outputs
Outputs of similar age
#149,674
of 302,664 outputs
Outputs of similar age from Source Code for Biology and Medicine
#2
of 4 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 127 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 302,664 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.