↓ Skip to main content

Anatomical and neuromuscular variables strongly predict maximum knee extension torque in healthy men

Overview of attention for article published in European Journal of Applied Physiology, April 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

blogs
1 blog
twitter
33 X users

Readers on

mendeley
137 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Anatomical and neuromuscular variables strongly predict maximum knee extension torque in healthy men
Published in
European Journal of Applied Physiology, April 2016
DOI 10.1007/s00421-016-3352-8
Pubmed ID
Authors

J. Trezise, N. Collier, A. J. Blazevich

Abstract

This study examined the relative influence of anatomical and neuromuscular variables on maximal isometric and concentric knee extensor torque and provided a comparative dataset for healthy young males. Quadriceps cross-sectional area (CSA) and fascicle length (l f) and angle (θ f) from the four quadriceps components; agonist (EMG:M) and antagonist muscle activity, and percent voluntary activation (%VA); patellar tendon moment arm distance (MA) and maximal voluntary isometric and concentric (60° s(-1)) torques, were measured in 56 men. Linear regression models predicting maximum torque were ranked using Akaike's Information Criterion (AICc), and Pearson's correlation coefficients assessed relationships between variables. The best-fit models explained up to 72 % of the variance in maximal voluntary knee extension torque. The combination of 'CSA + θ f + EMG:M + %VA' best predicted maximum isometric torque (R (2) = 72 %, AICc weight = 0.38) and 'CSA + θ f + MA' (R (2) = 65 %, AICc weight = 0.21) best predicted maximum concentric torque. Proximal quadriceps CSA was included in all models rather than the traditionally used mid-muscle CSA. Fascicle angle appeared consistently in all models despite its weak correlation with maximum torque in isolation, emphasising the importance of examining interactions among variables. While muscle activity was important for torque prediction in both contraction modes, MA only strongly influenced maximal concentric torque. These models identify the main sources of inter-individual differences strongly influencing maximal knee extension torque production in healthy men. The comparative dataset allows the identification of potential variables to target (i.e. weaknesses) in individuals.

X Demographics

X Demographics

The data shown below were collected from the profiles of 33 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 137 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Norway 1 <1%
Unknown 136 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 22 16%
Student > Ph. D. Student 14 10%
Student > Bachelor 14 10%
Researcher 9 7%
Other 7 5%
Other 21 15%
Unknown 50 36%
Readers by discipline Count As %
Sports and Recreations 40 29%
Medicine and Dentistry 10 7%
Nursing and Health Professions 7 5%
Social Sciences 4 3%
Psychology 3 2%
Other 14 10%
Unknown 59 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 28. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 February 2018.
All research outputs
#1,382,174
of 25,371,288 outputs
Outputs from European Journal of Applied Physiology
#437
of 4,345 outputs
Outputs of similar age
#23,395
of 315,821 outputs
Outputs of similar age from European Journal of Applied Physiology
#5
of 40 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,345 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,821 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.