↓ Skip to main content

Recombinant versus urinary human chorionic gonadotrophin for final oocyte maturation triggering in IVF and ICSI cycles

Overview of attention for article published in Cochrane database of systematic reviews, April 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (57th percentile)

Mentioned by

twitter
3 tweeters
facebook
2 Facebook pages

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
114 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Recombinant versus urinary human chorionic gonadotrophin for final oocyte maturation triggering in IVF and ICSI cycles
Published in
Cochrane database of systematic reviews, April 2016
DOI 10.1002/14651858.cd003719.pub4
Pubmed ID
Authors

Mohamed A Youssef, Ahmed M Abou-Setta, Wai Sun Lam

Abstract

For the last few decades urinary human chorionic gonadotrophin (uhCG) has been used to trigger final oocyte maturation in cycles of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). Recombinant technology has allowed the production of two drugs, recombinant human chorionic gonadotrophin (rhCG) and recombinant luteinising hormone (rLH), that can be used for the same purpose, to mimic the endogenous luteinising hormone (LH) surge. This allows commercial manufacturers to adjust production according to market requirements and to remove all urinary contaminants, facilitating the safe subcutaneous administration of a compound with less batch-to-batch variation. However, prior to a change in practice, it is necessary to compare the effectiveness of the recombinant drugs to the currently used urinary human chorionic gonadotrophin (uhCG). To assess the effects of subcutaneous rhCG and high dose rLH versus uhCG for inducing final oocyte maturation in subfertile women undergoing IVF and ICSI cycles. We searched the Cochrane Menstrual Disorders and Subfertility Group Trials Register (April 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 3), MEDLINE (1946 to April 2015), EMBASE (1980 to April 2015) and PsycINFO (1806 to April 2015) as well as trial registers at ClinicalTrials.gov on 13 May 2015 and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) search portal on 14 May 2015. Two review authors independently scanned titles and abstracts and selected those that appeared relevant for collection of the full paper. We included randomised controlled trials comparing rhCG and rLH with urinary hCG for final oocyte maturation triggering in IVF and ICSI cycles for treatment of infertility in normogonadotropic women. Two authors independently performed assessment for inclusion or exclusion, quality assessment and data extraction. We discussed any discrepancies in the presence of a third author to reach a consensus. The primary review outcomes were ongoing pregnancy/live birth and incidence of ovarian hyperstimulation syndrome (OHSS). Clinical pregnancy, miscarriage rate, number of oocytes retrieved and adverse events were secondary outcomes. We combined data to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs) and assessed statistical heterogeneity using the I(2) statistic. We evaluated the overall quality of the evidence for the main comparisons using GRADE methods. We included 18 RCTs involving 2952 participants; 15 compared rhCG with uhCG, and 3 compared rhLH with uhCG. The evidence for different comparisons ranged from very low to high quality: limitations were poor reporting of study methods and imprecision. Pharmaceutical companies funded 9 of the 18 studies, and 5 studies did not clearly report funding source. Ongoing pregnancy/live birthThere was no conclusive evidence of a difference between rhCG and uhCG (OR 1.15, 95% CI 0.89 to 1.49; 7 RCTs, N = 1136, I(2) = 0%, moderate quality evidence) or between rhLH and uhCG (OR 0.95, 95% CI 0.51 to 1.78, 2 RCTs, N = 289, I(2) = 0%, very low quality evidence) for ongoing pregnancy/live birth rates. OHSSThere was no evidence of a difference between rhCG and uhCG in the incidence of OHSS: moderate to severe OHSS (OR 1.76, 95% CI 0.37 to 8.45; 3 RCTs, N = 417, I(2) = 0%, low quality evidence), moderate OHSS (OR 0.78, 95% CI 0.27 to 2.27; 1 RCT, N = 243, I(2) = 0%, low quality evidence), mild to moderate OHSS (OR 1.00, 95% CI 0.42 to 2.38; 2 RCTs, N = 320, I(2) = 0%, low quality evidence) or undefined OHSS (OR 1.18, 95% CI 0.50 to 2.78; 3 RCTs, N = 495, I(2) = 0%, low quality evidence). Likewise, there was no evidence of a difference between rhLH and uhCG in OHSS rates for moderate OHSS (OR 0.82, 95% CI 0.39 to 1.69, 2 RCTs, N = 280, I(2) = 5%, very low quality evidence). Other adverse eventsThere was no evidence of a difference in miscarriage rates between rhCG and uhCG (OR 0.72, 95% CI 0.41 to 1.25; 8 RCTs, N = 1196, I(2) = 0%, low quality evidence) or between rhLH and uhCG (OR 0.95, 95% CI 0.38 to 2.40; 2 RCTs, N = 289, I(2) = 0%, very low quality evidence). For other adverse effects (most commonly injection-site reactions) rhCG was associated with a lower number of adverse events than uhCG (OR 0.52, 95% CI 0.35 to 0.76; 5 RCTS, N = 561; I(2) = 67%, moderate quality evidence). However, when we used a random-effects model due to substantial statistical heterogeneity, there was no evidence of a difference between the groups (OR 0.56, 95% CI 0.27 to 1.13). Only one study comparing rLH and uhCG reported other adverse events, and it was impossible to draw conclusions. We conclude that there is no evidence of a difference between rhCG or rhLH and uhCG for live birth or ongoing pregnancy rates or rates of OHSS.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 114 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 114 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 21 18%
Student > Ph. D. Student 18 16%
Researcher 18 16%
Student > Bachelor 13 11%
Other 11 10%
Other 16 14%
Unknown 17 15%
Readers by discipline Count As %
Medicine and Dentistry 44 39%
Nursing and Health Professions 9 8%
Biochemistry, Genetics and Molecular Biology 7 6%
Agricultural and Biological Sciences 5 4%
Social Sciences 5 4%
Other 19 17%
Unknown 25 22%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 November 2017.
All research outputs
#6,788,931
of 12,527,219 outputs
Outputs from Cochrane database of systematic reviews
#7,459
of 8,923 outputs
Outputs of similar age
#108,073
of 262,535 outputs
Outputs of similar age from Cochrane database of systematic reviews
#125
of 162 outputs
Altmetric has tracked 12,527,219 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,923 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.2. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,535 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.
We're also able to compare this research output to 162 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.