↓ Skip to main content

Predicting the Effects of Anti-angiogenic Agents Targeting Specific VEGF Isoforms

Overview of attention for article published in The AAPS Journal, May 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Predicting the Effects of Anti-angiogenic Agents Targeting Specific VEGF Isoforms
Published in
The AAPS Journal, May 2012
DOI 10.1208/s12248-012-9363-4
Pubmed ID
Authors

Stacey D. Finley, Aleksander S. Popel

Abstract

Vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis, whose effect on cancer growth and development is well characterized. Alternative splicing of VEGF leads to several different isoforms, which are differentially expressed in various tumor types and have distinct functions in tumor blood vessel formation. Many cancer therapies aim to inhibit angiogenesis by targeting VEGF and preventing intracellular signaling leading to tumor vascularization; however, the effects of targeting specific VEGF isoforms have received little attention in the clinical setting. In this work, we investigate the effects of selectively targeting a single VEGF isoform, as compared with inhibiting all isoforms. We utilize a molecular-detailed whole-body compartment model of VEGF transport and kinetics in the presence of breast tumor. The model includes two major VEGF isoforms, VEGF(121) and VEGF(165), receptors VEGFR1 and VEGFR2, and co-receptors Neuropilin-1 and Neuropilin-2. We utilize the model to predict the concentrations of free VEGF, the number of VEGF/VEGFR2 complexes (considered to be pro-angiogenic), and the receptor occupancy profiles following inhibition of VEGF using isoform-specific anti-VEGF agents. We predict that targeting VEGF(121) leads to a 54% and 84% reduction in free VEGF in tumors that secrete both VEGF isoforms or tumors that overexpress VEGF(121), respectively. Additionally, 21% of the VEGFR2 molecules in the blood are ligated following inhibition of VEGF(121), compared with 88% when both isoforms are targeted. Targeting VEGF(121) reduces tumor free VEGF and is an effective treatment strategy. Our results provide a basis for clinical investigation of isoform-specific anti-VEGF agents.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 2%
Switzerland 1 2%
Unknown 56 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 26%
Researcher 12 21%
Student > Bachelor 9 16%
Professor 5 9%
Student > Master 4 7%
Other 6 10%
Unknown 7 12%
Readers by discipline Count As %
Engineering 14 24%
Agricultural and Biological Sciences 12 21%
Biochemistry, Genetics and Molecular Biology 10 17%
Medicine and Dentistry 5 9%
Pharmacology, Toxicology and Pharmaceutical Science 3 5%
Other 7 12%
Unknown 7 12%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 May 2012.
All research outputs
#20,156,537
of 22,664,644 outputs
Outputs from The AAPS Journal
#1,245
of 1,279 outputs
Outputs of similar age
#148,287
of 163,482 outputs
Outputs of similar age from The AAPS Journal
#15
of 16 outputs
Altmetric has tracked 22,664,644 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,279 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 163,482 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.