↓ Skip to main content

High frequency jet ventilation versus high frequency oscillatory ventilation for pulmonary dysfunction in preterm infants

Overview of attention for article published in Cochrane database of systematic reviews, May 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
High frequency jet ventilation versus high frequency oscillatory ventilation for pulmonary dysfunction in preterm infants
Published in
Cochrane database of systematic reviews, May 2016
DOI 10.1002/14651858.cd010548.pub2
Pubmed ID
Authors

Yahya H Ethawi, Ayman Abou Mehrem, John Minski, Chelsea A Ruth, Peter G Davis

Abstract

Respiratory distress syndrome (RDS) is considered one of the major contributors to severe pulmonary dysfunction and consequent death in preterm infants. Despite widespread improvements in care, including increased utilization of antenatal steroids, use of surfactant replacement therapy, and advances in conventional mechanical ventilation (CMV), chronic lung disease (CLD) occurs in 42% of surviving preterm infants born at less than 28 weeks gestational age (GA). High frequency ventilation (HFV) aims to optimize lung expansion while minimizing tidal volume (Vt) to decrease lung injury. Two methods of HFV - high frequency oscillatory ventilation (HFOV) and high frequency jet ventilation (HFJV) - are widely used, but neither has demonstrated clear superiority in elective or rescue mode. To compare the benefits and side effects of HFJV versus HFOV for mortality and morbidity in preterm infants born at less than 37 weeks GA with pulmonary dysfunction in both elective and rescue modes. We used the standard search strategy of the Cochrane Neonatal Review Group to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 11), MEDLINE via PubMed (1966 to November 30, 2015), EMBASE (1980 to November 30, 2015), and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (1982 to November 30, 2015). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomized controlled trials and quasi-randomized trials. We imposed no date, language, or publication restrictions. We planned to include randomized, cluster-randomized, and quasi-randomized controlled trials if study authors stated explicitly that groups compared in the trial were established by a random or systematic method of allocation. We planned to exclude cross-over studies, as they would not allow assessment of the outcomes of interest. We used the standard methods of the Neonatal Cochrane Review Group, including independent trial assessment and data extraction. We intended to analyze the data by using risk ratios (RRs) and risk differences (RDs) and 1/RD. We planned to calculate the number needed to treat for an additional beneficial outcome (NNTB) or the number needed to treat for an additional harmful outcome (NNTH). We found no studies that met our inclusion criteria. We found no evidence to support the superiority of HFJV or HFOV as elective or rescue therapy. Until such evidence is available, comparison of potential side effects or presumed benefits of either mode is not feasible.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 4%
Student > Master 2 4%
Unspecified 2 4%
Unknown 40 87%
Readers by discipline Count As %
Unspecified 2 4%
Nursing and Health Professions 2 4%
Medicine and Dentistry 2 4%
Unknown 40 87%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 August 2016.
All research outputs
#7,860,154
of 12,527,219 outputs
Outputs from Cochrane database of systematic reviews
#8,178
of 8,923 outputs
Outputs of similar age
#142,780
of 262,657 outputs
Outputs of similar age from Cochrane database of systematic reviews
#145
of 173 outputs
Altmetric has tracked 12,527,219 research outputs across all sources so far. This one is in the 23rd percentile – i.e., 23% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,923 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.2. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,657 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 173 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.