↓ Skip to main content

Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care

Overview of attention for article published in Annals of Intensive Care, May 2012
Altmetric Badge

Citations

dimensions_citation
83 Dimensions

Readers on

mendeley
119 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care
Published in
Annals of Intensive Care, May 2012
DOI 10.1186/2110-5820-2-11
Pubmed ID
Authors

Miklos Lipcsey, Nicholas CZ Woinarski, Rinaldo Bellomo

Abstract

Near infrared spectroscopy of the thenar eminence (NIRSth) is a noninvasive bedside method for assessing tissue oxygenation. The NIRS probe emits light with several wavelengths in the 700- to 850-nm interval and measures the reflected light mainly from a predefined depth. Complex physical models then allow the measurement of the relative concentrations of oxy and deoxyhemoglobin, and thus tissue saturation (StO2), as well as an approximation of the tissue hemoglobin, given as tissue hemoglobin index.Here we review of current knowledge of the application of NIRSth in anesthesia and intensive care.We performed an analytical and descriptive review of the literature using the terms "near-infrared spectroscopy" combined with "anesthesia," "anesthesiology," "intensive care," "critical care," "sepsis," "bleeding," "hemorrhage," "surgery," and "trauma" with particular focus on all NIRS studies involving measurement at the thenar eminence.We found that NIRSth has been applied as clinical research tool to perform both static and dynamic assessment of StO2. Specifically, a vascular occlusion test (VOT) with a pressure cuff can be used to provide a dynamic assessment of the tissue oxygenation response to ischemia. StO2 changes during such induced ischemia-reperfusion yield information on oxygen consumption and microvasculatory reactivity. Some evidence suggests that StO2 during VOT can detect fluid responsiveness during surgery. In hypovolemic shock, StO2 can help to predict outcome, but not in septic shock. In contrast, NIRS parameters during VOT increase the diagnostic and prognostic accuracy in both hypovolemic and septic shock. Minimal data are available on static or dynamic StO2 used to guide therapy.Although the available data are promising, further studies are necessary before NIRSth can become part of routine clinical practice.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 119 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Italy 2 2%
Brazil 1 <1%
Canada 1 <1%
Japan 1 <1%
United States 1 <1%
Unknown 113 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 14%
Student > Master 15 13%
Researcher 13 11%
Other 9 8%
Student > Postgraduate 9 8%
Other 30 25%
Unknown 26 22%
Readers by discipline Count As %
Medicine and Dentistry 52 44%
Engineering 10 8%
Agricultural and Biological Sciences 6 5%
Physics and Astronomy 5 4%
Sports and Recreations 4 3%
Other 11 9%
Unknown 31 26%