↓ Skip to main content

Evolution of the SOUL Heme-Binding Protein Superfamily Across Eukarya

Overview of attention for article published in Journal of Molecular Evolution, May 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users
patent
1 patent

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evolution of the SOUL Heme-Binding Protein Superfamily Across Eukarya
Published in
Journal of Molecular Evolution, May 2016
DOI 10.1007/s00239-016-9745-9
Pubmed ID
Authors

Antonio Emidio Fortunato, Paolo Sordino, Nikos Andreakis

Abstract

SOUL homologs constitute a heme-binding protein superfamily putatively involved in heme and tetrapyrrole metabolisms associated with a number of physiological processes. Despite their omnipresence across the tree of life and the biochemical characterization of many SOUL members, their functional role and the evolutionary events leading to such remarkable protein repertoire still remain cryptic. To explore SOUL evolution, we apply a computational phylogenetic approach, including a relevant number of SOUL homologs, to identify paralog forms and reconstruct their genealogy across the tree of life and within species. In animal lineages, multiple gene duplication or loss events and paralog functional specializations underlie SOUL evolution from the dawn of ancestral echinoderm and mollusc SOUL forms. In photosynthetic organisms, SOUL evolution is linked to the endosymbiosis events leading to plastid acquisition in eukaryotes. Derivative features, such as the F2L peptide and BH3 domain, evolved in vertebrates and provided innovative functionality to support immune response and apoptosis. The evolution of elements such as the N-terminal protein domain DUF2358, the His42 residue, or the tetrapyrrole heme-binding site is modern, and their functional implications still unresolved. This study represents the first in-depth analysis of SOUL protein evolution and provides novel insights in the understanding of their obscure physiological role.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 20%
Student > Bachelor 3 15%
Researcher 3 15%
Student > Master 2 10%
Student > Doctoral Student 2 10%
Other 2 10%
Unknown 4 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 45%
Agricultural and Biological Sciences 3 15%
Environmental Science 1 5%
Computer Science 1 5%
Medicine and Dentistry 1 5%
Other 0 0%
Unknown 5 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 November 2021.
All research outputs
#2,838,877
of 24,532,617 outputs
Outputs from Journal of Molecular Evolution
#110
of 1,474 outputs
Outputs of similar age
#47,862
of 339,407 outputs
Outputs of similar age from Journal of Molecular Evolution
#1
of 11 outputs
Altmetric has tracked 24,532,617 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,474 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.6. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,407 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 99% of its contemporaries.