↓ Skip to main content

India nudges to contain COVID-19 pandemic: A reactive public policy analysis using machine-learning based topic modelling

Overview of attention for article published in PLOS ONE, September 2020
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

news
25 news outlets
blogs
2 blogs
twitter
112 X users
facebook
1 Facebook page

Citations

dimensions_citation
78 Dimensions

Readers on

mendeley
390 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
India nudges to contain COVID-19 pandemic: A reactive public policy analysis using machine-learning based topic modelling
Published in
PLOS ONE, September 2020
DOI 10.1371/journal.pone.0238972
Pubmed ID
Authors

Ramit Debnath, Ronita Bardhan

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 112 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 390 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 390 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 35 9%
Researcher 32 8%
Student > Ph. D. Student 31 8%
Lecturer 28 7%
Other 21 5%
Other 79 20%
Unknown 164 42%
Readers by discipline Count As %
Medicine and Dentistry 34 9%
Social Sciences 34 9%
Computer Science 22 6%
Business, Management and Accounting 18 5%
Economics, Econometrics and Finance 13 3%
Other 85 22%
Unknown 184 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 292. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 September 2022.
All research outputs
#128,050
of 26,552,644 outputs
Outputs from PLOS ONE
#1,988
of 231,638 outputs
Outputs of similar age
#3,874
of 430,792 outputs
Outputs of similar age from PLOS ONE
#36
of 2,879 outputs
Altmetric has tracked 26,552,644 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 231,638 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 16.0. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 430,792 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 2,879 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.