↓ Skip to main content

Neurofeedback Outcomes in Clients with Asperger’s Syndrome

Overview of attention for article published in Applied Psychophysiology and Biofeedback, November 2009
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
6 X users
facebook
6 Facebook pages
googleplus
1 Google+ user

Citations

dimensions_citation
72 Dimensions

Readers on

mendeley
447 Mendeley
citeulike
3 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neurofeedback Outcomes in Clients with Asperger’s Syndrome
Published in
Applied Psychophysiology and Biofeedback, November 2009
DOI 10.1007/s10484-009-9120-3
Pubmed ID
Authors

Lynda Thompson, Michael Thompson, Andrea Reid

Abstract

This paper summarizes data from a review of neurofeedback (NFB) training with 150 clients with Asperger's Syndrome (AS) and 9 clients with Autistic Spectrum Disorder (ASD) seen over a 15 year period (1993-2008) in a clinical setting. The main objective was to investigate whether electroncephalographic (EEG) biofeedback, also called neurofeedback (NFB), made a significant difference in clients diagnosed with AS. An earlier paper (Thompson et al. 2009) reviews the symptoms of AS, highlights research findings and theories concerning this disorder, discusses QEEG patterns in AS (both single and 19-channel), and details a hypothesis, based on functional neuroanatomy, concerning how NFB, often paired with biofeedback (BFB), might produce a change in symptoms. A further aim of the current report is to provide practitioners with a detailed description of the method used to address some of the key symptoms of AS in order to encourage further research and clinical work to refine the use of NFB plus BFB in the treatment of AS. All charts were included for review where there was a diagnosis of AS or ASD and pre- and post-training testing results were available for one or more of the standardized tests used. Clients received 40-60 sessions of NFB, which was combined with training in metacognitive strategies and, for most older adolescent and adult clients, with BFB of respiration, electrodermal response, and, more recently, heart rate variability. For the majority of clients, feedback was contingent on decreasing slow wave activity (usually 3-7 Hz), decreasing beta spindling if it was present (usually between 23 and 35 Hz), and increasing fast wave activity termed sensorimotor rhythm (SMR) (12-15 or 13-15 Hz depending on assessment findings). The most common initial montage was referential placement at the vertex (CZ) for children and at FCz (midway between FZ and CZ) for adults, referenced to the right ear. Metacognitive strategies relevant to social understanding, spatial reasoning, reading comprehension, and math were taught when the feedback indicated that the client was relaxed, calm, and focused. Significant improvements were found on measures of attention (T.O.V.A. and IVA), core symptoms (Australian Scale for Asperger's Syndrome, Conners' Global Index, SNAP version of the DSM-IV criteria for ADHD, and the ADD-Q), achievement (Wide Range Achievement Test), and intelligence (Wechsler Intelligence Scales). The average gain for the Full Scale IQ score was 9 points. A decrease in relevant EEG ratios was also observed. The ratios measured were (4-8 Hz)(2)/(13-21 Hz)(2), (4-8 Hz)/(16-20 Hz), and (3-7 Hz)/(12-15 Hz). The positive outcomes of decreased symptoms of Asperger's and ADHD (including a decrease in difficulties with attention, anxiety, aprosodias, and social functioning) plus improved academic and intellectual functioning, provide preliminary support for the use of neurofeedback as a helpful component of effective intervention in people with AS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 447 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 4 <1%
Germany 3 <1%
Mexico 2 <1%
Switzerland 1 <1%
Netherlands 1 <1%
Brazil 1 <1%
Sweden 1 <1%
South Africa 1 <1%
Portugal 1 <1%
Other 4 <1%
Unknown 428 96%

Demographic breakdown

Readers by professional status Count As %
Student > Master 85 19%
Student > Ph. D. Student 58 13%
Researcher 49 11%
Student > Doctoral Student 44 10%
Student > Bachelor 39 9%
Other 97 22%
Unknown 75 17%
Readers by discipline Count As %
Psychology 182 41%
Medicine and Dentistry 34 8%
Neuroscience 31 7%
Social Sciences 21 5%
Nursing and Health Professions 18 4%
Other 75 17%
Unknown 86 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 November 2018.
All research outputs
#4,178,785
of 23,849,058 outputs
Outputs from Applied Psychophysiology and Biofeedback
#93
of 355 outputs
Outputs of similar age
#16,480
of 95,738 outputs
Outputs of similar age from Applied Psychophysiology and Biofeedback
#2
of 8 outputs
Altmetric has tracked 23,849,058 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 355 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.1. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 95,738 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 6 of them.