↓ Skip to main content

Disinfection effects of undoped and silver-doped ceria powders of nanometer crystallite size

Overview of attention for article published in International Journal of Nanomedicine, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Disinfection effects of undoped and silver-doped ceria powders of nanometer crystallite size
Published in
International Journal of Nanomedicine, June 2016
DOI 10.2147/ijn.s103760
Pubmed ID
Authors

Dah-Shyang Tsai, Tzu-Sen Yang, Yu-Sheng Huang, Pei-Wen Peng, Keng-Liang Ou

Abstract

Being endowed with an ability of capturing and releasing oxygen, the ceria surface conventionally assumes the role of catalyzing redox reactions in chemistry. This catalytic effect also makes possible its cytotoxicity toward microorganisms at room temperature. To study this cytotoxicity, we synthesized the doped and undoped ceria particles of 8-9 nm in size using an inexpensive precipitation method and evaluated their disinfecting aptitudes with the turbidimetric and plate count methods. Among the samples being analyzed, the silver-doped ceria exhibits the highest sterilization ability, yet the undoped ceria is the most intriguing. The disinfection effect of undoped ceria is moderate in magnitude, demanding a physical contact between the ceria surface and bacteria cell wall, or the redox catalysis that can damage the cell wall and result in the cell killing. Evidently, this effect is short-range and depends strongly on dispersion of the nanoparticles. In contrast, the disinfection effects of silver-doped ceria reach out several millimeters since it releases silver ions to poison the surrounding microorganisms. Additionally, the aliovalent silver substitution creates more ceria defects. The synergetic combination, silver poisoning and heterogeneous redox catalysis, lifts and extends the disinfecting capability of silver-doped ceria to a superior level.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 14%
Student > Bachelor 4 14%
Other 2 7%
Student > Doctoral Student 2 7%
Researcher 2 7%
Other 6 21%
Unknown 8 29%
Readers by discipline Count As %
Chemistry 3 11%
Materials Science 3 11%
Medicine and Dentistry 3 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Biochemistry, Genetics and Molecular Biology 1 4%
Other 4 14%
Unknown 13 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 June 2016.
All research outputs
#16,722,190
of 25,374,917 outputs
Outputs from International Journal of Nanomedicine
#2,088
of 4,123 outputs
Outputs of similar age
#215,254
of 353,662 outputs
Outputs of similar age from International Journal of Nanomedicine
#70
of 123 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,662 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 123 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.