↓ Skip to main content

Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation

Overview of attention for article published in Critical Care, June 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)

Mentioned by

twitter
10 X users

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation
Published in
Critical Care, June 2016
DOI 10.1186/s13054-016-1340-3
Pubmed ID
Authors

Alexander Asmussen, Katrin Fink, Hans-Jörg Busch, Thomas Helbing, Natascha Bourgeois, Christoph Bode, Sebastian Grundmann

Abstract

Whole body ischemia-reperfusion injury (IRI) after cardiopulmonary resuscitation (CPR) induces a generalized inflammatory response which contributes to the development of post-cardiac arrest syndrome (PCAS). Recently, pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and inflammasomes, have been shown to mediate the inflammatory response in IRI. In this study we investigated monocyte PRR signaling and function in PCAS. Blood samples were drawn in the first 12 hours, and at 24 and 48 hours following return of spontaneous circulation in 51 survivors after cardiac arrest. Monocyte mRNA levels of TLR2, TLR4, interleukin-1 receptor-associated kinase (IRAK)3, IRAK4, NLR family pyrin domain containing (NLRP)1, NLRP3, AIM2, PYCARD, CASP1, and IL1B were determined by real-time quantitative PCR. Ex vivo cytokine production in response to stimulation with TLR ligands Pam3CSK4 and lipopolysaccharide (LPS) was assessed in both whole blood and monocyte culture assays. Ex vivo cytokine production of peripheral blood mononuclear cells (PBMCs) from a healthy volunteer in response to stimulation with patients' sera with or without LPS was assessed. The results were compared to 19 hemodynamically stable patients with coronary artery disease. Monocyte TLR2, TLR4, IRAK3, IRAK4, NLRP3, PYCARD and IL1B were initially upregulated in patients following cardiac arrest. The NLRP1 and AIM2 inflammasomes were downregulated in resuscitated patients. There was a significant positive correlation between TLR2, TLR4, IRAK3 and IRAK4 expression and the degree of ischemia as assessed by serum lactate levels and the time until return of spontaneous circulation. Nonsurvivors at 30 days had significantly lower mRNA levels of TLR2, IRAK3, IRAK4, NLRP3 and CASP1 in the late phase following cardiac arrest. We observed reduced proinflammatory cytokine release in response to both TLR2 and TLR4 activation in whole blood and monocyte culture assays in patients after CPR. Sera from resuscitated patients attenuated the inflammatory response in cultured PBMCs after co-stimulation with LPS. Successful resuscitation from cardiac arrest results in changes in monocyte pattern recognition receptor signaling pathways, which may contribute to the post-cardiac arrest syndrome. The trial was registered in the German Clinical Trials Register ( DRKS00009684 ) on 27/11/2015.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Professor > Associate Professor 5 13%
Student > Master 5 13%
Researcher 4 10%
Student > Doctoral Student 3 8%
Student > Ph. D. Student 3 8%
Other 8 21%
Unknown 11 28%
Readers by discipline Count As %
Medicine and Dentistry 18 46%
Biochemistry, Genetics and Molecular Biology 3 8%
Unspecified 2 5%
Agricultural and Biological Sciences 1 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 2 5%
Unknown 12 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 June 2016.
All research outputs
#6,264,736
of 25,373,627 outputs
Outputs from Critical Care
#3,603
of 6,554 outputs
Outputs of similar age
#94,617
of 354,137 outputs
Outputs of similar age from Critical Care
#93
of 113 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,554 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.8. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 354,137 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 113 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.