↓ Skip to main content

The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, June 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
5 X users
patent
1 patent

Citations

dimensions_citation
99 Dimensions

Readers on

mendeley
109 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling
Published in
Biotechnology for Biofuels and Bioproducts, June 2016
DOI 10.1186/s13068-016-0546-6
Pubmed ID
Authors

Hiroshi Mizuno, Shigemitsu Kasuga, Hiroyuki Kawahigashi

Abstract

SWEET is a newly identified family of sugar transporters. Although SWEET transporters have been characterized by using Arabidopsis and rice, very little knowledge of sucrose accumulation in the stem region is available, as these model plants accumulate little sucrose in their stems. To elucidate the expression of key SWEET genes involved in sucrose accumulation of sorghum, we performed transcriptome profiling by RNA-seq, categorization using phylogenetic trees, analysis of chromosomal synteny, and comparison of amino acid sequences between SIL-05 (a sweet sorghum) and BTx623 (a grain sorghum). We identified 23 SWEET genes in the sorghum genome. In the leaf, SbSWEET8-1 was highly expressed and was grouped in the same clade as AtSWEET11 and AtSWEET12 that play a role in the efflux of photosynthesized sucrose. The key genes in sucrose synthesis (SPS3) and that in another step of sugar transport (SbSUT1 and SbSUT2) were also highly expressed, suggesting that sucrose is newly synthesized and actively exported from the leaf. In the stem, SbSWEET4-3 was uniquely highly expressed. SbSWEET4-1, SbSWEET4-2, and SbSWEET4-3 were categorized into the same clade, but their tissue specificities were different, suggesting that SbSWEET4-3 is a sugar transporter with specific roles in the stem. We found a putative SWEET4-3 ortholog in the corresponding region of the maize chromosome, but not the rice chromosome, suggesting that SbSWEET4-3 was copied after the branching of sorghum and maize from rice. In the panicle from the heading through to 36 days afterward, SbSWEET2-1 and SbSWEET7-1 were expressed and grouped in the same clade as rice OsSWEET11/Xa13 that is essential for seed development. SbSWEET9-3 was highly expressed in the panicle only just after heading and was grouped into the same clade as AtSWEET8/RPG1 that is essential for pollen viability. Five of 23 SWEET genes had SNPs that caused nonsynonymous amino acid substitutions between SIL-05 and BTx623. We determined the key SWEET genes for technological improvement of sorghum in the production of biofuels: SbSWEET8-1 for efflux of sucrose from the leaf; SbSWEET4-3 for unloading sucrose from the phloem in the stem; SbSWEET2-1 and SbSWEET7-1 for seed development; SbSWEET9-3 for pollen nutrition.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 109 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 <1%
Thailand 1 <1%
Unknown 107 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 24 22%
Student > Ph. D. Student 20 18%
Student > Master 12 11%
Student > Postgraduate 6 6%
Student > Bachelor 5 5%
Other 17 16%
Unknown 25 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 52 48%
Biochemistry, Genetics and Molecular Biology 23 21%
Business, Management and Accounting 2 2%
Arts and Humanities 1 <1%
Social Sciences 1 <1%
Other 2 2%
Unknown 28 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 January 2024.
All research outputs
#6,259,334
of 25,381,384 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#369
of 1,576 outputs
Outputs of similar age
#96,361
of 363,193 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#11
of 40 outputs
Altmetric has tracked 25,381,384 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,576 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 363,193 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.