↓ Skip to main content

Development of a Whole-Body Physiologically Based Pharmacokinetic Approach to Assess the Pharmacokinetics of Drugs in Elderly Individuals

Overview of attention for article published in Clinical Pharmacokinetics, June 2016
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
80 Dimensions

Readers on

mendeley
160 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Development of a Whole-Body Physiologically Based Pharmacokinetic Approach to Assess the Pharmacokinetics of Drugs in Elderly Individuals
Published in
Clinical Pharmacokinetics, June 2016
DOI 10.1007/s40262-016-0422-3
Pubmed ID
Authors

Jan-Frederik Schlender, Michaela Meyer, Kirstin Thelen, Markus Krauss, Stefan Willmann, Thomas Eissing, Ulrich Jaehde

Abstract

Because of the vulnerability and frailty of elderly adults, clinical drug development has traditionally been biased towards young and middle-aged adults. Recent efforts have begun to incorporate data from paediatric investigations. Nevertheless, the elderly often remain underrepresented in clinical trials, even though persons aged 65 years and older receive the majority of drug prescriptions. Consequently, a knowledge gap exists with regard to pharmacokinetic (PK) and pharmacodynamic (PD) responses in elderly subjects, leaving the safety and efficacy of medicines for this population unclear. The goal of this study was to extend a physiologically based pharmacokinetic (PBPK) model for adults to encompass the full course of healthy aging through to the age of 100 years, to support dose selection and improve pharmacotherapy for the elderly age group. For parameterization of the PBPK model for healthy aging individuals, the literature was scanned for anthropometric and physiological data, which were consolidated and incorporated into the PBPK software PK-Sim(®). Age-related changes that occur from 65 to 100 years of age were the main focus of this work. For a sound and continuous description of an aging human, data on anatomical and physiological changes ranging from early adulthood to old age were included. The capability of the PBPK approach to predict distribution and elimination of drugs was verified using the test compounds morphine and furosemide, administered intravenously. Both are cleared by a single elimination pathway. PK parameters for the two compounds in younger adults and elderly individuals were obtained from the literature. Matching virtual populations-with regard to age, sex, anthropometric measures and dosage-were generated. Profiles of plasma drug concentrations over time, volume of distribution at steady state (V ss) values and elimination half-life (t ½) values from the literature were compared with those predicted by PBPK simulations for both younger adults and the elderly. For most organs, the age-dependent information gathered in the extensive literature analysis was dense. In contrast, with respect to blood flow, the literature study produced only sparse data for several tissues, and in these cases, linear regression was required to capture the entire elderly age range. On the basis of age-informed physiology, the predicted PK profiles described age-associated trends well. The root mean squared prediction error for the prediction of plasma concentrations of furosemide and morphine in the elderly were improved by 32 and 49 %, respectively, by use of age-informed physiology. The majority of the individual V ss and t ½ values for the two model compounds, furosemide and morphine, were well predicted in the elderly population, except for long furosemide half-lifes. The results of this study support the feasibility of using a knowledge-driven PBPK aging model that includes the elderly to predict PK alterations throughout the entire course of aging, and thus to optimize drug therapy in elderly individuals. These results indicate that pharmacotherapy and safety-related control of geriatric drug therapy regimens may be greatly facilitated by the information gained from PBPK predictions.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 160 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 160 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 16%
Student > Bachelor 23 14%
Researcher 16 10%
Student > Master 13 8%
Other 8 5%
Other 26 16%
Unknown 48 30%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 47 29%
Medicine and Dentistry 19 12%
Nursing and Health Professions 8 5%
Agricultural and Biological Sciences 7 4%
Biochemistry, Genetics and Molecular Biology 7 4%
Other 18 11%
Unknown 54 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 July 2016.
All research outputs
#20,335,423
of 22,880,230 outputs
Outputs from Clinical Pharmacokinetics
#1,405
of 1,484 outputs
Outputs of similar age
#304,488
of 351,572 outputs
Outputs of similar age from Clinical Pharmacokinetics
#27
of 27 outputs
Altmetric has tracked 22,880,230 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,484 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 351,572 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.