↓ Skip to main content

A Neonatal Model of Intravenous Staphylococcus epidermidis Infection in Mice <24 h Old Enables Characterization of Early Innate Immune Responses

Overview of attention for article published in PLOS ONE, September 2012
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
69 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Neonatal Model of Intravenous Staphylococcus epidermidis Infection in Mice <24 h Old Enables Characterization of Early Innate Immune Responses
Published in
PLOS ONE, September 2012
DOI 10.1371/journal.pone.0043897
Pubmed ID
Authors

Kenny D. Kronforst, Christy J. Mancuso, Matthew Pettengill, Jana Ninkovic, Melanie R. Power Coombs, Chad Stevens, Michael Otto, Carina Mallard, Xiaoyang Wang, Donald Goldmann, Ofer Levy

Abstract

Staphylococcus epidermidis (SE) causes late onset sepsis and significant morbidity in catheterized preterm newborns. Animal models of SE infection are useful in characterizing disease mechanisms and are an important approach to developing improved diagnostics and therapeutics. Current murine models of neonatal bacterial infection employ intraperitoneal or subcutaneous routes at several days of age, and may, therefore, not accurately reflect distinct features of innate immune responses to bacteremia. In this study we developed, validated, and characterized a murine model of intravenous (IV) infection in neonatal mice <24 hours (h) old to describe the early innate immune response to SE. C57BL/6 mice <24 h old were injected IV with 10(6), 10(7), 10(8) colony-forming units (CFU) of SE 1457, a clinical isolate from a central catheter infection. A prospective injection scoring system was developed and validated, with only high quality injections analyzed. Newborn mice were euthanized between 2 and 48 h post-injection and spleen, liver, and blood collected to assess bacterial viability, gene expression, and cytokine production. High quality IV injections demonstrated inoculum-dependent infection of spleen, liver and blood. Within 2 h of injection, SE induced selective transcription of TLR2 and MyD88 in the liver, and increased systemic production of plasma IL-6 and TNF-α. Despite clearance of bacteremia and solid organ infection within 48 h, inoculum-dependent impairment in weight gain was noted. We conclude that a model of IV SE infection in neonatal mice <24 h old is feasible, demonstrating inoculum-dependent infection of solid organs and a pattern of bacteremia, rapid and selective innate immune activation, and impairment of weight gain typical of infected human neonates. This novel model can now be used to characterize immune ontogeny, evaluate infection biomarkers, and assess preventative and therapeutic modalities.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 69 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 22%
Student > Master 11 16%
Researcher 10 14%
Student > Bachelor 8 12%
Student > Doctoral Student 5 7%
Other 8 12%
Unknown 12 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 35%
Medicine and Dentistry 18 26%
Immunology and Microbiology 6 9%
Biochemistry, Genetics and Molecular Biology 4 6%
Neuroscience 2 3%
Other 2 3%
Unknown 13 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 17. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 September 2012.
All research outputs
#1,836,502
of 22,678,224 outputs
Outputs from PLOS ONE
#23,685
of 193,568 outputs
Outputs of similar age
#12,334
of 169,179 outputs
Outputs of similar age from PLOS ONE
#417
of 4,380 outputs
Altmetric has tracked 22,678,224 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 193,568 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.0. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 169,179 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 4,380 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.