↓ Skip to main content

STIM1 Regulates Platelet-Derived Growth Factor-Induced Migration and Ca2+ Influx in Human Airway Smooth Muscle Cells

Overview of attention for article published in PLOS ONE, September 2012
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

twitter
1 X user
patent
3 patents

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
STIM1 Regulates Platelet-Derived Growth Factor-Induced Migration and Ca2+ Influx in Human Airway Smooth Muscle Cells
Published in
PLOS ONE, September 2012
DOI 10.1371/journal.pone.0045056
Pubmed ID
Authors

Nobukazu Suganuma, Satoru Ito, Hiromichi Aso, Masashi Kondo, Mitsuo Sato, Masahiro Sokabe, Yoshinori Hasegawa

Abstract

It is suggested that migration of airway smooth muscle (ASM) cells plays an important role in the pathogenesis of airway remodeling in asthma. Increases in intracellular Ca(2+) concentrations ([Ca(2+)](i)) regulate most ASM cell functions related to asthma, such as contraction and proliferation. Recently, STIM1 was identified as a sarcoplasmic reticulum (SR) Ca(2+) sensor that activates Orai1, the Ca(2+) channel responsible for store-operated Ca(2+) entry (SOCE). We investigated the role of STIM1 in [Ca(2+)](i) and cell migration induced by platelet-derived growth factor (PDGF)-BB in human ASM cells. Cell migration was assessed by a chemotaxis chamber assay. Human ASM cells express STIM1, STIM2, and Orai1 mRNAs. SOCE activated by thapsigargin, an inhibitor of SR Ca(2+)-ATPase, was significantly blocked by STIM1 siRNA and Orai1 siRNA but not by STIM2 siRNA. PDGF-BB induced a transient increase in [Ca(2+)](i) followed by sustained [Ca(2+)](i) elevation. Sustained increases in [Ca(2+)](i) due to PDGF-BB were significantly inhibited by a Ca(2+) chelating agent EGTA or by siRNA for STIM1 or Orai1. The numbers of migrating cells were significantly increased by PDGF-BB treatment for 6 h. Knockdown of STIM1 and Orai1 by siRNA transfection inhibited PDGF-induced cell migration. Similarly, EGTA significantly inhibited PDGF-induced cell migration. In contrast, transfection with siRNA for STIM2 did not inhibit the sustained elevation of [Ca(2+)](i) or cell migration induced by PDGF-BB. These results demonstrate that STIM1 and Orai1 are essential for PDGF-induced cell migration and Ca(2+) influx in human ASM cells. STIM1 could be an important molecule responsible for airway remodeling.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 22%
Researcher 6 19%
Student > Doctoral Student 3 9%
Professor 3 9%
Student > Bachelor 2 6%
Other 5 16%
Unknown 6 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 28%
Biochemistry, Genetics and Molecular Biology 8 25%
Medicine and Dentistry 6 19%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Immunology and Microbiology 1 3%
Other 2 6%
Unknown 4 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 March 2019.
All research outputs
#3,175,587
of 22,678,224 outputs
Outputs from PLOS ONE
#41,788
of 193,568 outputs
Outputs of similar age
#22,628
of 168,561 outputs
Outputs of similar age from PLOS ONE
#694
of 4,262 outputs
Altmetric has tracked 22,678,224 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 193,568 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.0. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 168,561 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 4,262 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.