↓ Skip to main content

A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits

Overview of attention for article published in BMC Plant Biology, July 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

blogs
1 blog
twitter
4 X users

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits
Published in
BMC Plant Biology, July 2016
DOI 10.1186/s12870-016-0842-0
Pubmed ID
Authors

Gorka Perpiñá, Cristina Esteras, Yves Gibon, Antonio J. Monforte, Belén Picó

Abstract

Genomic libraries of introgression lines (ILs) consist of collections of homozygous lines with a single chromosomal introgression from a donor genotype in a common, usually elite, genetic background, representing the whole donor genome in the full collection. Currently, the only available melon IL collection was generated using Piel de sapo (var. inodorus) as the recurrent background. ILs are not available in genetic backgrounds representing other important market class cultivars, such as the cantalupensis. The recent availability of genomic tools in melon, such as SNP collections and genetic maps, facilitates the development of such mapping populations. We have developed a new genomic library of introgression lines from the Japanese cv. Ginsen Makuwa (var. makuwa) into the French Charentais-type cv. Vedrantais (var. cantalupensis) genetic background. In order to speed up the breeding program, we applied medium-throughput SNP genotyping with Sequenom MassARRAY technology in early backcross generations and High Resolution Melting in the final steps. The phenotyping of the backcross generations and of the final set of 27 ILs (averaging 1.3 introgressions/plant and covering nearly 100 % of the donor genome), in three environments, allowed the detection of stable QTLs for flowering and fruit quality traits, including some that affect fruit size in chromosomes 6 and 11, others that change fruit shape in chromosomes 7 and 11, others that change flesh color in chromosomes 2, 8 and 9, and still others that increase sucrose content and delay climacteric behavior in chromosomes 5 and 10. A new melon IL collection in the Charentais genetic background has been developed. Genomic regions that consistently affect flowering and fruit quality traits have been identified, which demonstrates the suitability of this collection for dissecting complex traits in melon. Additionally, pre-breeding lines with new, commercially interesting phenotypes have been observed, including delayed climacteric ripening associated to higher sucrose levels, which is of great interest for Charentais cultivar breeding.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 71 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 25%
Student > Master 15 21%
Researcher 7 10%
Student > Bachelor 5 7%
Student > Doctoral Student 4 6%
Other 6 8%
Unknown 16 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 37 52%
Biochemistry, Genetics and Molecular Biology 10 14%
Earth and Planetary Sciences 2 3%
Mathematics 1 1%
Computer Science 1 1%
Other 1 1%
Unknown 19 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 September 2017.
All research outputs
#2,950,569
of 22,880,230 outputs
Outputs from BMC Plant Biology
#158
of 3,265 outputs
Outputs of similar age
#54,972
of 354,871 outputs
Outputs of similar age from BMC Plant Biology
#2
of 50 outputs
Altmetric has tracked 22,880,230 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,265 research outputs from this source. They receive a mean Attention Score of 3.0. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 354,871 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 50 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.