↓ Skip to main content

The role of nuclear factor of activated T cells during phorbol myristate acetate-induced cardiac differentiation of mesenchymal stem cells

Overview of attention for article published in Stem Cell Research & Therapy, July 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The role of nuclear factor of activated T cells during phorbol myristate acetate-induced cardiac differentiation of mesenchymal stem cells
Published in
Stem Cell Research & Therapy, July 2016
DOI 10.1186/s13287-016-0348-6
Pubmed ID
Authors

Hyang-Hee Seo, Chang Youn Lee, Jiyun Lee, Soyeon Lim, Eunhyun Choi, Jong-Chul Park, Seahyoung Lee, Ki-Chul Hwang

Abstract

We previously reported that phorbol 12-myristate 13-acetate (PMA) treatment can induce the cardiac differentiation of mesenchymal stem cells (MSCs). In the present study, we investigated how PMA induces cardiac differentiation of MSCs, focusing on its effect on the transcription factors responsible for increased cardiac marker gene expression. Human MSCs (hMSCs) were treated with 1 μM PMA for 9 days. The expression of MSC markers and cardiac markers in the PMA-treated hMSC, as well as the nuclear translocation of transcription factors, nuclear factor of activated T cells (NFAT), and myogenic differentiation 1 (MyoD), was examined. Transcriptional activity of NFAT was examined by utilizing a green fluorescent protein (GFP) vector containing NFAT motif of human interleukin-2 promoter. The effect of PMA on the expression of key cell cycle regulators was examined. PMA induces the transcriptional activity of NFAT and MyoD, which have been associated with increased expression of cardiac troponin T (cTnT) and myosin heavy chain (MHC), respectively. Our data suggested that protein kinase C (PKC) mediates the effect of PMA on NFAT activation. Furthermore, PMA treatment increased cell-cycle regulator p27(kip1) expression, suggesting that PMA triggers the cardiac differentiation program in MSCs by regulating key transcription factors and cell cycle regulators. The results of this study demonstrate the importance of NFAT activation during PMA-induced MSC differentiation and help us to better understand the underlying mechanisms of small molecule-mediated MSC differentiation so that we can develop a strategy for synthesizing novel and improved differentiation-inducing small molecules.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 6%
Unknown 16 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 29%
Student > Master 4 24%
Student > Bachelor 3 18%
Student > Ph. D. Student 2 12%
Unknown 3 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 41%
Biochemistry, Genetics and Molecular Biology 2 12%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Immunology and Microbiology 1 6%
Psychology 1 6%
Other 1 6%
Unknown 4 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 July 2016.
All research outputs
#20,335,770
of 22,880,691 outputs
Outputs from Stem Cell Research & Therapy
#2,050
of 2,425 outputs
Outputs of similar age
#308,432
of 354,435 outputs
Outputs of similar age from Stem Cell Research & Therapy
#31
of 34 outputs
Altmetric has tracked 22,880,691 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,425 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 354,435 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.