↓ Skip to main content

DNA Replication

Overview of attention for book
Cover of 'DNA Replication'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Historical Perspective of Eukaryotic DNA Replication
  3. Altmetric Badge
    Chapter 2 Regulation of Replication Origins
  4. Altmetric Badge
    Chapter 3 Molecular Mechanism for Chromatin Regulation During MCM Loading in Mammalian Cells
  5. Altmetric Badge
    Chapter 4 Initiation of DNA Replication at the Chromosomal Origin of E. coli , oriC
  6. Altmetric Badge
    Chapter 5 Initiation of DNA Replication in the Archaea
  7. Altmetric Badge
    Chapter 6 Mechanism of Lagging-Strand DNA Replication in Eukaryotes
  8. Altmetric Badge
    Chapter 7 Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication
  9. Altmetric Badge
    Chapter 8 Termination of Eukaryotic Replication Forks
  10. Altmetric Badge
    Chapter 9 Structure of the MCM2-7 Double Hexamer and Its Implications for the Mechanistic Functions of the Mcm2-7 Complex
  11. Altmetric Badge
    Chapter 10 Architecture of the Saccharomyces cerevisiae Replisome
  12. Altmetric Badge
    Chapter 11 Replication Domains: Genome Compartmentalization into Functional Replication Units
  13. Altmetric Badge
    Chapter 12 Rif1-Dependent Regulation of Genome Replication in Mammals
  14. Altmetric Badge
    Chapter 13 G-Quadruplexes and DNA Replication Origins
  15. Altmetric Badge
    Chapter 14 Interaction of Rif1 Protein with G-Quadruplex in Control of Chromosome Transactions
  16. Altmetric Badge
    Chapter 15 Chromatin Replication and Histone Dynamics
  17. Altmetric Badge
    Chapter 16 The Temporal Regulation of S Phase Proteins During G1
  18. Altmetric Badge
    Chapter 17 Roles of SUMO in Replication Initiation, Progression, and Termination
  19. Altmetric Badge
    Chapter 18 The Multiple Roles of Ubiquitylation in Regulating Challenged DNA Replication
  20. Altmetric Badge
    Chapter 19 Regulation of Mammalian DNA Replication via the Ubiquitin-Proteasome System
  21. Altmetric Badge
    Chapter 20 Coordinating Replication with Transcription
  22. Altmetric Badge
    Chapter 21 Fragility Extraordinaire: Unsolved Mysteries of Chromosome Fragile Sites
  23. Altmetric Badge
    Chapter 22 Cyclin E Deregulation and Genomic Instability
  24. Altmetric Badge
    Chapter 23 Replication Through Repetitive DNA Elements and Their Role in Human Diseases
Attention for Chapter 10: Architecture of the Saccharomyces cerevisiae Replisome
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Architecture of the Saccharomyces cerevisiae Replisome
Chapter number 10
Book title
DNA Replication
Published in
Advances in experimental medicine and biology, January 2017
DOI 10.1007/978-981-10-6955-0_10
Pubmed ID
Book ISBNs
978-9-81-106954-3, 978-9-81-106955-0
Authors

Lin Bai, Zuanning Yuan, Jingchuan Sun, Roxana Georgescu, Michael E. O’Donnell, Huilin Li, Bai, Lin, Yuan, Zuanning, Sun, Jingchuan, Georgescu, Roxana, O’Donnell, Michael E., Li, Huilin

Abstract

Eukaryotic replication proteins are highly conserved, and thus study of Saccharomyces cerevisiae replication can inform about this central process in higher eukaryotes including humans. The S. cerevisiae replisome is a large and dynamic assembly comprised of ~50 proteins. The core of the replisome is composed of 31 different proteins including the 11-subunit CMG helicase; RFC clamp loader pentamer; PCNA clamp; the heteroligomeric DNA polymerases ε, δ, and α-primase; and the RPA heterotrimeric single strand binding protein. Many additional protein factors either travel with or transiently associate with these replisome proteins at particular times during replication. In this chapter, we summarize several recent structural studies on the S. cerevisiae replisome and its subassemblies using single particle electron microscopy and X-ray crystallography. These recent structural studies have outlined the overall architecture of a core replisome subassembly and shed new light on the mechanism of eukaryotic replication.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 23%
Researcher 6 20%
Student > Ph. D. Student 6 20%
Student > Bachelor 4 13%
Student > Postgraduate 2 7%
Other 3 10%
Unknown 2 7%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 57%
Agricultural and Biological Sciences 5 17%
Chemistry 3 10%
Immunology and Microbiology 2 7%
Psychology 1 3%
Other 0 0%
Unknown 2 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 January 2018.
All research outputs
#20,461,148
of 23,018,998 outputs
Outputs from Advances in experimental medicine and biology
#3,986
of 4,960 outputs
Outputs of similar age
#356,235
of 421,314 outputs
Outputs of similar age from Advances in experimental medicine and biology
#414
of 490 outputs
Altmetric has tracked 23,018,998 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,960 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,314 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 490 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.