↓ Skip to main content

Quantitative Proteomics by Mass Spectrometry

Overview of attention for book
Cover of 'Quantitative Proteomics by Mass Spectrometry'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards.
  3. Altmetric Badge
    Chapter 2 Quantitative Analysis of the Sirt5-Regulated Lysine Succinylation Proteome in Mammalian Cells.
  4. Altmetric Badge
    Chapter 3 Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy.
  5. Altmetric Badge
    Chapter 4 Label-Free Quantitation for Clinical Proteomics.
  6. Altmetric Badge
    Chapter 5 Proteogenomic Methods to Improve Genome Annotation
  7. Altmetric Badge
    Chapter 6 Mass Spectrometry-Based Quantitative O-GlcNAcomic Analysis.
  8. Altmetric Badge
    Chapter 7 Isolating and Quantifying Plasma HDL Proteins by Sequential Density Gradient Ultracentrifugation and Targeted Proteomics.
  9. Altmetric Badge
    Chapter 8 A Method for Label-Free, Differential Top-Down Proteomics. - PubMed - NCBI
  10. Altmetric Badge
    Chapter 9 Multiplexed Immunoaffinity Enrichment of Peptides with Anti-peptide Antibodies and Quantification by Stable Isotope Dilution Multiple Reaction Monitoring Mass Spectrometry.
  11. Altmetric Badge
    Chapter 10 High-Throughput Quantitative Proteomics Enabled by Mass Defect-Based 12-Plex DiLeu Isobaric Tags
  12. Altmetric Badge
    Chapter 11 Isotopic N,N-Dimethyl Leucine (iDiLeu) for Absolute Quantification of Peptides Using a Standard Curve Approach.
  13. Altmetric Badge
    Chapter 12 Selecting Optimal Peptides for Targeted Proteomic Experiments in Human Plasma Using In Vitro Synthesized Proteins as Analytical Standards.
  14. Altmetric Badge
    Chapter 13 Using the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted Proteomics Assays
  15. Altmetric Badge
    Chapter 14 Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS
  16. Altmetric Badge
    Chapter 15 Multiple and Selective Reaction Monitoring Using Triple Quadrupole Mass Spectrometer: Preclinical Large Cohort Analysis.
  17. Altmetric Badge
    Chapter 16 Methods for SWATH™: Data Independent Acquisition on TripleTOF Mass Spectrometers. - PubMed - NCBI
  18. Altmetric Badge
    Chapter 17 Measurement of Phosphorylated Peptides with Absolute Quantification.
  19. Altmetric Badge
    Chapter 18 Proteomic Analysis of Protein Turnover by Metabolic Whole Rodent Pulse-Chase Isotopic Labeling and Shotgun Mass Spectrometry Analysis
Attention for Chapter 9: Multiplexed Immunoaffinity Enrichment of Peptides with Anti-peptide Antibodies and Quantification by Stable Isotope Dilution Multiple Reaction Monitoring Mass Spectrometry.
Altmetric Badge

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Multiplexed Immunoaffinity Enrichment of Peptides with Anti-peptide Antibodies and Quantification by Stable Isotope Dilution Multiple Reaction Monitoring Mass Spectrometry.
Chapter number 9
Book title
Quantitative Proteomics by Mass Spectrometry
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3524-6_9
Pubmed ID
Book ISBNs
978-1-4939-3522-2, 978-1-4939-3524-6
Authors

Eric Kuhn, Steven A. Carr

Editors

Salvatore Sechi

Abstract

Immunoaffinity enrichment of peptides using anti-peptide antibodies and their subsequent analysis by targeted mass spectrometry using stable isotope-labeled peptide standards is a sensitive and relatively high-throughput assay technology for unmodified and modified peptides in cells, tissues, and biofluids. Suppliers of antibodies and peptides are increasingly aware of this technique and have started incorporating customized quality measures and production protocols to increase the success rate, performance, and supply of the necessary reagents. Over the past decade, analytical biochemists, clinical diagnosticians, antibody experts, and mass spectrometry specialists have shared ideas, instrumentation, reagents, and protocols, to demonstrate that immuno-MRM-MS is reproducible across laboratories. Assay performance is now suitable for verification of candidate biomarkers from large scale discovery "omics" studies, measuring diagnostic proteins in plasma in the clinical laboratory, and for developing a companion assay for preclinical drug studies. Here we illustrate the process for developing these assays with a step-by-step guide for a 20-plex immuno-MRM-MS assay. We emphasize the need for analytical validation of the assay to insure that antibodies, peptides, and mass spectrometer are working as intended, in a multiplexed manner, with suitable assay performance (median values for 20 peptides: CV = 12.4 % at 740 amol/μL, LOD = 310 amol/μL) for applications in quantitative biology and candidate biomarker verification. The assays described conform to Tier 2 (of 3) level of analytical assay validation (1), meaning that the assays are capable of repeatedly measuring sets of analytes of interest within and across samples/experiments and employ internal standards for each analyte for confident detection and precise quantification.

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 36%
Other 3 27%
Student > Postgraduate 1 9%
Professor > Associate Professor 1 9%
Unknown 2 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 18%
Agricultural and Biological Sciences 2 18%
Chemistry 2 18%
Neuroscience 1 9%
Medicine and Dentistry 1 9%
Other 0 0%
Unknown 3 27%