↓ Skip to main content

Egg-laying by female Aedes aegypti shapes the bacterial communities of breeding sites

Overview of attention for article published in BMC Biology, April 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)

Mentioned by

twitter
19 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Egg-laying by female Aedes aegypti shapes the bacterial communities of breeding sites
Published in
BMC Biology, April 2023
DOI 10.1186/s12915-023-01605-2
Pubmed ID
Authors

Katherine D. Mosquera, Luis Eduardo Martínez Villegas, Gabriel Rocha Fernandes, Mariana Rocha David, Rafael Maciel-de-Freitas, Luciano A. Moreira, Marcelo G. Lorenzo

Abstract

Aedes aegypti, the main arboviral mosquito vector, is attracted to human dwellings and makes use of human-generated breeding sites. Past research has shown that bacterial communities associated with such sites undergo compositional shifts as larvae develop and that exposure to different bacteria during larval stages can have an impact on mosquito development and life-history traits. Based on these facts, we hypothesized that female Ae. aegypti shape the bacteria communities of breeding sites during oviposition as a form of niche construction to favor offspring fitness. To test this hypothesis, we first verified that gravid females can act as mechanical vectors of bacteria. We then elaborated an experimental scheme to test the impact of oviposition on breeding site microbiota. Five different groups of experimental breeding sites were set up with a sterile aqueous solution of larval food, and subsequently exposed to (1) the environment alone, (2) surface-sterilized eggs, (3) unsterilized eggs, (4) a non-egg laying female, or (5) oviposition by a gravid female. The microbiota of these differently treated sites was assessed by amplicon-oriented DNA sequencing once the larvae from the sites with eggs had completed development and formed pupae. Microbial ecology analyses revealed significant differences between the five treatments in terms of diversity. In particular, between-treatment shifts in abundance profiles were detected, showing that females induce a significant decrease in microbial alpha diversity through oviposition. In addition, indicator species analysis pinpointed bacterial taxa with significant predicting values and fidelity coefficients for the samples in which single females laid eggs. Furthermore, we provide evidence regarding how one of these indicator taxa, Elizabethkingia, exerts a positive effect on the development and fitness of mosquito larvae. Ovipositing females impact the composition of the microbial community associated with a breeding site, promoting certain bacterial taxa over those prevailing in the environment. Among these bacteria, we found known mosquito symbionts and showed that they can improve offspring fitness if present in the water where eggs are laid. We deem this oviposition-mediated bacterial community shaping as a form of niche construction initiated by the gravid female.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 19 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 17%
Unspecified 3 13%
Researcher 2 9%
Student > Postgraduate 2 9%
Professor > Associate Professor 1 4%
Other 1 4%
Unknown 10 43%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 17%
Unspecified 3 13%
Agricultural and Biological Sciences 2 9%
Immunology and Microbiology 1 4%
Neuroscience 1 4%
Other 1 4%
Unknown 11 48%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 April 2023.
All research outputs
#2,740,861
of 25,988,468 outputs
Outputs from BMC Biology
#657
of 723 outputs
Outputs of similar age
#53,040
of 416,536 outputs
Outputs of similar age from BMC Biology
#1
of 1 outputs
Altmetric has tracked 25,988,468 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 723 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 18.4. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 416,536 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them