↓ Skip to main content

Modeling Peptide-Protein Interactions

Overview of attention for book
Cover of 'Modeling Peptide-Protein Interactions'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The Usage of ACCLUSTER for Peptide Binding Site Prediction
  3. Altmetric Badge
    Chapter 2 Detection of Peptide-Binding Sites on Protein Surfaces Using the Peptimap Server
  4. Altmetric Badge
    Chapter 3 Peptide Suboptimal Conformation Sampling for the Prediction of Protein-Peptide Interactions
  5. Altmetric Badge
    Chapter 4 Template-Based Prediction of Protein-Peptide Interactions by Using GalaxyPepDock
  6. Altmetric Badge
    Chapter 5 Application of the ATTRACT Coarse-Grained Docking and Atomistic Refinement for Predicting Peptide-Protein Interactions
  7. Altmetric Badge
    Chapter 6 Highly Flexible Protein-Peptide Docking Using CABS-Dock
  8. Altmetric Badge
    Chapter 7 AnchorDock for Blind Flexible Docking of Peptides to Proteins
  9. Altmetric Badge
    Chapter 8 Information-Driven, Ensemble Flexible Peptide Docking Using HADDOCK
  10. Altmetric Badge
    Chapter 9 Modeling Peptide-Protein Structure and Binding Using Monte Carlo Sampling Approaches: Rosetta FlexPepDock and FlexPepBind
  11. Altmetric Badge
    Chapter 10 Flexible Backbone Methods for Predicting and Designing Peptide Specificity
  12. Altmetric Badge
    Chapter 11 Simplifying the Design of Protein-Peptide Interaction Specificity with Sequence-Based Representations of Atomistic Models
  13. Altmetric Badge
    Chapter 12 Binding Specificity Profiles from Computational Peptide Screening
  14. Altmetric Badge
    Chapter 13 Enriching Peptide Libraries for Binding Affinity and Specificity Through Computationally Directed Library Design
  15. Altmetric Badge
    Chapter 14 Investigating Protein–Peptide Interactions Using the Schrödinger Computational Suite
  16. Altmetric Badge
    Chapter 15 Identifying Loop-Mediated Protein–Protein Interactions Using LoopFinder
  17. Altmetric Badge
    Chapter 16 Protein-Peptide Interaction Design: PepCrawler and PinaColada
  18. Altmetric Badge
    Chapter 17 Modeling and Design of Peptidomimetics to Modulate Protein–Protein Interactions
Attention for Chapter 12: Binding Specificity Profiles from Computational Peptide Screening
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Binding Specificity Profiles from Computational Peptide Screening
Chapter number 12
Book title
Modeling Peptide-Protein Interactions
Published in
Methods in molecular biology, February 2017
DOI 10.1007/978-1-4939-6798-8_12
Pubmed ID
Book ISBNs
978-1-4939-6796-4, 978-1-4939-6798-8
Authors

Stefan Wallin

Editors

Ora Schueler-Furman, Nir London

Abstract

The computational peptide screening method is a Monte Carlo-based procedure to systematically characterize the specificity of a peptide-binding site. The method is based on a generalized-ensemble algorithm in which the peptide sequence has become a dynamic variable, i.e., molecular simulations with ordinary conformational moves are enhanced with a type of "mutational" move such that proper statistics are achieved for multiple sequences in a single run. The peptide screening method has two main steps. In the first, reference simulations of the unbound state are performed and used to parametrize a linear model of the unbound state free energy, determined by requiring that the marginal distribution of peptide sequences is approximately flat. In the second step, simulations of the bound state are performed. By using the linear model as a free energy reference point, the marginal distribution of peptide sequences becomes skewed towards sequences with higher binding free energies. From analyses of the sequences generated in the second step and their conformational ensembles, information on peptide binding specificity, relative binding affinities, and the molecular basis of specificity can be achieved. Here we demonstrate how the algorithm can be implemented and applied to determine the peptide binding specificity of a PDZ domain from the protein GRIP1.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 40%
Researcher 1 20%
Other 1 20%
Student > Master 1 20%
Readers by discipline Count As %
Physics and Astronomy 2 40%
Biochemistry, Genetics and Molecular Biology 1 20%
Agricultural and Biological Sciences 1 20%
Medicine and Dentistry 1 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 March 2017.
All research outputs
#18,536,772
of 22,958,253 outputs
Outputs from Methods in molecular biology
#7,935
of 13,137 outputs
Outputs of similar age
#238,573
of 311,787 outputs
Outputs of similar age from Methods in molecular biology
#155
of 266 outputs
Altmetric has tracked 22,958,253 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,137 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,787 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 266 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.