↓ Skip to main content

Proteomics for Drug Discovery

Overview of attention for book
Cover of 'Proteomics for Drug Discovery'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 A Photoaffinity Labeling-Based Chemoproteomics Strategy for Unbiased Target Deconvolution of Small Molecule Drug Candidates
  3. Altmetric Badge
    Chapter 2 Multiplexed Liquid Chromatography-Multiple Reaction Monitoring Mass Spectrometry Quantification of Cancer Signaling Proteins
  4. Altmetric Badge
    Chapter 3 Monitoring Dynamic Changes of the Cell Surface Glycoproteome by Quantitative Proteomics
  5. Altmetric Badge
    Chapter 4 High-Resolution Parallel Reaction Monitoring with Electron Transfer Dissociation for Middle-Down Proteomics: An Application to Study the Quantitative Changes Induced by Histone Modifying Enzyme Inhibitors and Activators
  6. Altmetric Badge
    Chapter 5 Preparation and Immunoaffinity Depletion of Fresh Frozen Tissue Homogenates for Mass Spectrometry-Based Proteomics in the Context of Drug Target/Biomarker Discovery
  7. Altmetric Badge
    Chapter 6 Target Identification Using Cell Permeable and Cleavable Chloroalkane Derivatized Small Molecules
  8. Altmetric Badge
    Chapter 7 Microfluidics-Mass Spectrometry of Protein-Carbohydrate Interactions: Applications to the Development of Therapeutics and Biomarker Discovery
  9. Altmetric Badge
    Chapter 8 Studying Protein–Protein Interactions by Biotin AP-Tagged Pulldown and LTQ-Orbitrap Mass Spectrometry
  10. Altmetric Badge
    Chapter 9 Post-Translational Modification Profiling-Functional Proteomics for the Analysis of Immune Regulation
  11. Altmetric Badge
    Chapter 10 Reverse Phase Protein Arrays and Drug Discovery
  12. Altmetric Badge
    Chapter 11 Probing Protein Kinase-ATP Interactions Using a Fluorescent ATP Analog
  13. Altmetric Badge
    Chapter 12 Preparation of Disease-Related Protein Assemblies for Single Particle Electron Microscopy
  14. Altmetric Badge
    Chapter 13 Identification of Lipid Binding Modulators Using the Protein-Lipid Overlay Assay
  15. Altmetric Badge
    Chapter 14 Resazurin Live Cell Assay: Setup and Fine-Tuning for Reliable Cytotoxicity Results
  16. Altmetric Badge
    Chapter 15 Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows
  17. Altmetric Badge
    Chapter 16 Method to Identify Silent Codon Mutations That May Alter Peptide Elongation Kinetics and Co-translational Protein Folding
  18. Altmetric Badge
    Chapter 17 In Silico Design of Anticancer Peptides
  19. Altmetric Badge
    Chapter 18 Docking and Virtual Screening in Drug Discovery
  20. Altmetric Badge
    Chapter 19 Bioinformatics Resources for Interpreting Proteomics Mass Spectrometry Data
  21. Altmetric Badge
    Chapter 20 Erratum to: Probing Protein Kinase-ATP Interactions Using a Fluorescent ATP Analog
Attention for Chapter 7: Microfluidics-Mass Spectrometry of Protein-Carbohydrate Interactions: Applications to the Development of Therapeutics and Biomarker Discovery
Altmetric Badge

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Microfluidics-Mass Spectrometry of Protein-Carbohydrate Interactions: Applications to the Development of Therapeutics and Biomarker Discovery
Chapter number 7
Book title
Proteomics for Drug Discovery
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7201-2_7
Pubmed ID
Book ISBNs
978-1-4939-7200-5, 978-1-4939-7201-2
Authors

Alina D. Zamfir

Abstract

The functional interactions of carbohydrates and their protein receptors are the basis of biological events critical to the evolution of pathological states. Hence, for the past years, such interactions have become the focus of research for the development of therapeutics and discovery of novel glycan biomarkers based on their binding affinity. Due to the high sensitivity, throughput, reproducibility, and capability to ionize minor species in heterogeneous mixtures, microfluidics-mass spectrometry (MS) has recently emerged as a method of choice in protein-glycan interactomics. In this chapter, a straightforward microfluidics-based MS methodology for the assessment of protein-glycan interactions is presented. The general protocol encompasses: (1) submission of the interacting partners to a binding assay under conditions mimicking the in vivo environment; and (2) screening of the reaction products and their structural characterization by fully automated chip-nanoelectrospray (nanoESI) MS and multistage MS. The first section of the chapter is devoted to describing a method that enables the study of protein-oligosaccharide interactions by chip-nanoESI quadrupole time-of-flight (QTOF) MS and top-down complex analysis by collision-induced dissociation (CID). This section provides the protocol for the determination of the complex formed by standard β-lactoglobulin (BLG) with maltohexaose (Glc6) and recommends as a concrete application the study of the interaction between BLG extracted from human milk with Glc6, considered a ligand able to reduce the allergenicity of this protein. The second part is dedicated to presenting the protocols for the binding assay followed by chip-nanoESI ion trap (ITMS) and electron transfer dissociation (ETD) in combination with CID for protein-ganglioside interactions, using as an example the B subunit of cholera toxin (Ctb5) in interaction with comercially available GM1 species. The methodology described may be successfully applied to native ganglioside mixtures from human brain, in particular for discovery of biomarkers on the basis of their binding affinity.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 2 15%
Other 1 8%
Student > Bachelor 1 8%
Student > Ph. D. Student 1 8%
Student > Master 1 8%
Other 2 15%
Unknown 5 38%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 15%
Nursing and Health Professions 1 8%
Agricultural and Biological Sciences 1 8%
Medicine and Dentistry 1 8%
Chemistry 1 8%
Other 1 8%
Unknown 6 46%