Title |
Antioxidative Activity of Diarylheptanoids from the Bark of Black Alder (Alnus glutinosa) and Their Interaction with Anticancer Drugs
|
---|---|
Published in |
Planta Medica, August 2014
|
DOI | 10.1055/s-0034-1382993 |
Pubmed ID | |
Authors |
Jelena Dinić, Miroslav Novaković, Ana Podolski-Renić, Sonja Stojković, Boris Mandić, Vele Tešević, Vlatka Vajs, Aleksandra Isaković, Milica Pešić |
Abstract |
Diarylheptanoids belong to polyphenols, a group of plant secondary metabolites with multiple biological properties. Many of them display antioxidative, cytotoxic, or anticancer actions and are increasingly recognized as potential therapeutic agents. The aim of this study was to evaluate antioxidant and cytoprotective activity of two diarylheptanoids: platyphylloside 5(S)-1,7-di(4-hydroxyphenyl)-3-heptanone-5-O-β-D-glucopyranoside (1) and its newly discovered analog 5(S)-1,7-di(4-hydroxyphenyl)-5-O-β-D-[6-(E-p-coumaroylglucopyranosyl)]heptane-3-one (2), both isolated from the bark of black alder (Alnus glutinosa). To that end, we have employed a cancer cell line (NCI-H460), normal human keratinocytes (HaCaT), and peripheral blood mononuclear cells. The effects on cell growth were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Cell death was examined by annexin V/propidium iodide staining on a flow cytometer. Reactive oxygen species production was examined by dihydroethidium staining. Mitochondrial structure and doxorubicin localization were visualized by fluorescent microscopy. Gene expression of manganese superoxide dismutase and hypoxia-inducible factor-1α was determined by reverse transcription polymerase chain reaction. Diarylheptanoids antagonized the effects of either doxorubicin or cisplatin, significantly increasing their IC50 values in normal cells. Diarylheptanoid 1 induced the retention of doxorubicin in cytoplasm and reduced mitochondrial fragmentation associated with doxorubicin application. Diarylheptanoid 2 reduced the reactive oxygen species production induced by cisplatin. Both compounds increased the messenger ribonucleic acid expression of enzymes involved in reactive oxygen species elimination (manganese superoxide dismutase and hypoxia-inducible factor-1α). These results indicate that neutralization of reactive oxygen species is an important mechanism of diarylheptanoid action, although these compounds exert a considerable anticancer effect. Therefore, these compounds may serve as protectors of normal cells during chemotherapy without significantly diminishing the effect of the applied chemotherapeutic. |
Twitter Demographics
Geographical breakdown
Country | Count | As % |
---|---|---|
Unknown | 1 | 100% |
Demographic breakdown
Type | Count | As % |
---|---|---|
Members of the public | 1 | 100% |
Mendeley readers
Geographical breakdown
Country | Count | As % |
---|---|---|
Serbia | 1 | 5% |
Denmark | 1 | 5% |
Unknown | 20 | 91% |
Demographic breakdown
Readers by professional status | Count | As % |
---|---|---|
Researcher | 4 | 18% |
Student > Bachelor | 3 | 14% |
Student > Ph. D. Student | 3 | 14% |
Student > Postgraduate | 2 | 9% |
Student > Doctoral Student | 1 | 5% |
Other | 3 | 14% |
Unknown | 6 | 27% |
Readers by discipline | Count | As % |
---|---|---|
Pharmacology, Toxicology and Pharmaceutical Science | 4 | 18% |
Biochemistry, Genetics and Molecular Biology | 3 | 14% |
Chemistry | 3 | 14% |
Immunology and Microbiology | 1 | 5% |
Agricultural and Biological Sciences | 1 | 5% |
Other | 2 | 9% |
Unknown | 8 | 36% |