↓ Skip to main content

Systems Biology

Overview of attention for book
Cover of 'Systems Biology'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Conceptual Challenges in the Theoretical Foundations of Systems Biology
  3. Altmetric Badge
    Chapter 2 An Integrative Approach Toward Biology, Organisms, and Cancer
  4. Altmetric Badge
    Chapter 3 Conceptual Challenges of the Systemic Approach in Understanding Cell Differentiation
  5. Altmetric Badge
    Chapter 4 A Primer on Mathematical Modeling in the Study of Organisms and Their Parts
  6. Altmetric Badge
    Chapter 5 The Search for System’s Parameters
  7. Altmetric Badge
    Chapter 6 Inverse Problems in Systems Biology: A Critical Review
  8. Altmetric Badge
    Chapter 7 Systems Biology Approach and Mathematical Modeling for Analyzing Phase-Space Switch During Epithelial-Mesenchymal Transition
  9. Altmetric Badge
    Chapter 8 Parameters Estimation in Phase-Space Landscape Reconstruction of Cell Fate: A Systems Biology Approach
  10. Altmetric Badge
    Chapter 9 Complexity of Biochemical and Genetic Responses Reduced Using Simple Theoretical Models
  11. Altmetric Badge
    Chapter 10 Systems Biology Modeling of Nonlinear Cancer Dynamics
  12. Altmetric Badge
    Chapter 11 Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach
  13. Altmetric Badge
    Chapter 12 A Network-Based Integrative Workflow to Unravel Mechanisms Underlying Disease Progression
  14. Altmetric Badge
    Chapter 13 Spatiotemporal Fluctuation Analysis of Molecular Diffusion Laws in Live-Cell Membranes
  15. Altmetric Badge
    Chapter 14 A Method for Cross-Species Visualization and Analysis of RNA-Sequence Data
  16. Altmetric Badge
    Chapter 15 Multi-agent Simulations of Population Behavior: A Promising Tool for Systems Biology
  17. Altmetric Badge
    Chapter 16 Metabolomics: Challenges and Opportunities in Systems Biology Studies
  18. Altmetric Badge
    Chapter 17 Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools
Attention for Chapter 16: Metabolomics: Challenges and Opportunities in Systems Biology Studies
Altmetric Badge

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Metabolomics: Challenges and Opportunities in Systems Biology Studies
Chapter number 16
Book title
Systems Biology
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7456-6_16
Pubmed ID
Book ISBNs
978-1-4939-7455-9, 978-1-4939-7456-6
Authors

Luca Casadei, Mariacristina Valerio, Cesare Manetti

Abstract

Metabolomics has the capability of providing predisposition, diagnostic, prognostic, and therapeutic biomarker profiles of individual patients, since a large number of metabolites can be measured in an unbiased manner from biological samples. In this setting, (1)H-Nuclear Magnetic Resonance (NMR) spectroscopy of biofluids such as plasma, urine, and fecal water offers the opportunity to identify patterns of biomarker changes that reflects the physiological or pathological status of an individual patient.In this chapter, we show as a metabolomics study can be used to diagnose a disease, classifying patients as healthy or as pathological taking into account individual variability.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 25%
Researcher 2 17%
Other 1 8%
Lecturer 1 8%
Professor 1 8%
Other 3 25%
Unknown 1 8%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 50%
Agricultural and Biological Sciences 2 17%
Medicine and Dentistry 2 17%
Engineering 1 8%
Unknown 1 8%