↓ Skip to main content

Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion

Overview of attention for article published in PLOS ONE, February 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

news
1 news outlet
blogs
3 blogs
twitter
4 tweeters

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion
Published in
PLOS ONE, February 2018
DOI 10.1371/journal.pone.0193247
Pubmed ID
Authors

Jordan L. Wilson, V. A. Samaranayake, Matt A. Limmer, Joel G. Burken

Abstract

Human exposure to volatile organic compounds (VOCs) via vapor intrusion (VI) is an emerging public health concern with notable detrimental impacts on public health. Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, provides a potential non-invasive screening approach to detect VI potential, and plant sampling is effective and also time- and cost-efficient. Existing VI assessment methods are time- and resource-intensive, invasive, and require access into residential and commercial buildings to drill holes through basement slabs to install sampling ports or require substantial equipment to install groundwater or soil vapor sampling outside the home. Tree-core samples collected in 2 days at the PCE Southeast Contamination Site in York, Nebraska were analyzed for tetrachloroethene (PCE) and results demonstrated positive correlations with groundwater, soil, soil-gas, sub-slab, and indoor-air samples collected over a 2-year period. Because tree-core samples were not collocated with other samples, interpolated surfaces of PCE concentrations were estimated so that comparisons could be made between pairs of data. Results indicate moderate to high correlation with average indoor-air and sub-slab PCE concentrations over long periods of time (months to years) to an interpolated tree-core PCE concentration surface, with Spearman's correlation coefficients (ρ) ranging from 0.31 to 0.53 that are comparable to the pairwise correlation between sub-slab and indoor-air PCE concentrations (ρ = 0.55, n = 89). Strong correlations between soil-gas, sub-slab, and indoor-air PCE concentrations and an interpolated tree-core PCE concentration surface indicate that trees are valid indicators of potential VI and human exposure to subsurface environment pollutants. The rapid and non-invasive nature of tree sampling are notable advantages: even with less than 60 trees in the vicinity of the source area, roughly 12 hours of tree-core sampling with minimal equipment at the PCE Southeast Contamination Site was sufficient to delineate vapor intrusion potential in the study area and offered comparable delineation to traditional sub-slab sampling performed at 140 properties over a period of approximately 2 years.

Twitter Demographics

The data shown below were collected from the profiles of 4 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 22%
Professor 2 11%
Researcher 2 11%
Other 2 11%
Student > Ph. D. Student 2 11%
Other 1 6%
Unknown 5 28%
Readers by discipline Count As %
Nursing and Health Professions 2 11%
Chemistry 2 11%
Social Sciences 2 11%
Engineering 2 11%
Psychology 1 6%
Other 2 11%
Unknown 7 39%

Attention Score in Context

This research output has an Altmetric Attention Score of 28. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 November 2018.
All research outputs
#749,280
of 15,606,134 outputs
Outputs from PLOS ONE
#11,873
of 155,717 outputs
Outputs of similar age
#24,110
of 276,497 outputs
Outputs of similar age from PLOS ONE
#323
of 2,691 outputs
Altmetric has tracked 15,606,134 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 155,717 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.9. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,497 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 2,691 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.