↓ Skip to main content

How to Overcome the Antibiotic Crisis

Overview of attention for book
Cover of 'How to Overcome the Antibiotic Crisis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 451 Antibiotics Clinical Development and Pipeline.
  3. Altmetric Badge
    Chapter 490 Anti-virulence Strategies to Target Bacterial Infections
  4. Altmetric Badge
    Chapter 491 Anti-infectives in Drug Delivery-Overcoming the Gram-Negative Bacterial Cell Envelope. - PubMed - NCBI
  5. Altmetric Badge
    Chapter 492 Tackling Threats and Future Problems of Multidrug-Resistant Bacteria
  6. Altmetric Badge
    Chapter 493 Strategies to Block Bacterial Pathogenesis by Interference with Motility and Chemotaxis
  7. Altmetric Badge
    Chapter 494 Diagnostics and Resistance Profiling of Bacterial Pathogens
  8. Altmetric Badge
    Chapter 495 New Horizons in the Development of Novel Needle-Free Immunization Strategies to Increase Vaccination Efficacy
  9. Altmetric Badge
    Chapter 496 Exploitation of Fungal Biodiversity for Discovery of Novel Antibiotics
  10. Altmetric Badge
    Chapter 497 Epidemiology of Staphylococcus aureus Nasal Carriage Patterns in the Community
  11. Altmetric Badge
    Chapter 498 Strategies for the Discovery and Development of New Antibiotics from Natural Products: Three Case Studies
  12. Altmetric Badge
    Chapter 499 History of Antibiotics Research
  13. Altmetric Badge
    Chapter 501 New Structural Templates for Clinically Validated and Novel Targets in Antimicrobial Drug Research and Development
  14. Altmetric Badge
    Chapter 502 Synthesis of Antibiotics
  15. Altmetric Badge
    Chapter 503 Actinobacteria and Myxobacteria—Two of the Most Important Bacterial Resources for Novel Antibiotics
  16. Altmetric Badge
    Chapter 504 Antibiotics and the Intestinal Microbiome : Individual Responses, Resilience of the Ecosystem, and the Susceptibility to Infections.
  17. Altmetric Badge
    Chapter 505 Emergence and Spread of Antimicrobial Resistance: Recent Insights from Bacterial Population Genomics
  18. Altmetric Badge
    Chapter 506 Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine as Exemplified by the Swine Pathogen Streptococcus suis
Attention for Chapter 498: Strategies for the Discovery and Development of New Antibiotics from Natural Products: Three Case Studies
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
67 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Strategies for the Discovery and Development of New Antibiotics from Natural Products: Three Case Studies
Chapter number 498
Book title
How to Overcome the Antibiotic Crisis
Published in
Current topics in microbiology and immunology, January 2016
DOI 10.1007/82_2016_498
Pubmed ID
Book ISBNs
978-3-31-949282-7, 978-3-31-949284-1
Authors

Jennifer Herrmann, Tadeja Lukežič, Angela Kling, Sascha Baumann, Stephan Hüttel, Hrvoje Petković, Rolf Müller, Herrmann, Jennifer, Lukežič, Tadeja, Kling, Angela, Baumann, Sascha, Hüttel, Stephan, Petković, Hrvoje, Müller, Rolf

Abstract

Natural products continue to be a predominant source for new anti-infective agents. Research at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and the Helmholtz Centre for Infection Research (HZI) is dedicated to the development of new lead structures against infectious diseases and, in particular, new antibiotics against hard-to-treat and multidrug-resistant bacterial pathogens. In this chapter, we introduce some of the concepts currently being employed in the field of antibiotic discovery. In particular, we will exemplarily illustrate three approaches: (1) Current sources for novel compounds are mainly soil-dwelling bacteria. In the course of our antimicrobial discovery program, a biodiverse collection of myxobacterial strains has been established and screened for antibiotic activities. Based on this effort, one successful example is presented in this chapter: Antibacterial cystobactamids were discovered and their molecular target, the DNA gyrase, was identified soon after the analysis of myxobacterial self-resistance making use of the information found in the respective biosynthesis gene cluster. (2) Besides our focus on novel natural products, we also apply strategies to further develop either neglected drugs or widely used antibiotics for which development of resistance in the clinical setting is an issue: Antimycobacterial griselimycins were first described in the 1960s but their development and use in tuberculosis therapy was not further pursued. We show how a griselimycin derivative with improved pharmacokinetic properties and enhanced potency against Mycobacterium tuberculosis revealed and validated a novel target for antibacterial therapy, the DNA sliding clamp. (3) In a third approach, biosynthetic engineering was used to modify and optimize natural products regarding their pharmaceutical properties and their production scale: The atypical tetracycline chelocardin is a natural product scaffold that was modified to yield a more potent derivative exhibiting activity against multidrug-resistant pathogens. This was achieved by genetic engineering of the producer strain and the resulting compound is now subject to further optimization by medicinal chemistry approaches.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Indonesia 1 1%
Japan 1 1%
United States 1 1%
Unknown 64 96%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 15 22%
Researcher 14 21%
Student > Ph. D. Student 8 12%
Student > Master 6 9%
Professor > Associate Professor 4 6%
Other 7 10%
Unknown 13 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 15 22%
Chemistry 10 15%
Agricultural and Biological Sciences 8 12%
Immunology and Microbiology 8 12%
Pharmacology, Toxicology and Pharmaceutical Science 6 9%
Other 7 10%
Unknown 13 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 February 2020.
All research outputs
#17,900,930
of 22,982,639 outputs
Outputs from Current topics in microbiology and immunology
#507
of 678 outputs
Outputs of similar age
#268,727
of 394,415 outputs
Outputs of similar age from Current topics in microbiology and immunology
#34
of 56 outputs
Altmetric has tracked 22,982,639 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 678 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 394,415 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.