↓ Skip to main content

Enzyme Stabilization and Immobilization

Overview of attention for book
Cover of 'Enzyme Stabilization and Immobilization'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to the Field of Enzyme Immobilization and Stabilization
  3. Altmetric Badge
    Chapter 2 Stabilization of Enzymes Through Encapsulation in Liposomes
  4. Altmetric Badge
    Chapter 3 Micellar Enzymology for Thermal, pH, and Solvent Stability
  5. Altmetric Badge
    Chapter 4 Enzyme Stabilization and Immobilization
  6. Altmetric Badge
    Chapter 5 Nanoporous Gold for Enzyme Immobilization
  7. Altmetric Badge
    Chapter 6 Enzyme Stabilization via Bio-Templated Silicification Reactions
  8. Altmetric Badge
    Chapter 7 Covalent Immobilization of Enzymes on Eupergit® Supports: Effect of the Immobilization Protocol
  9. Altmetric Badge
    Chapter 8 Micellar Polymer Encapsulation of Enzymes
  10. Altmetric Badge
    Chapter 9 Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media
  11. Altmetric Badge
    Chapter 10 Protein-Coated Microcrystals, Combi-Protein-Coated Microcrystals, and Cross-Linked Protein-Coated Microcrystals of Enzymes for Use in Low-Water Media
  12. Altmetric Badge
    Chapter 11 Macroporous Poly(GMA-co-EGDMA) for Enzyme Stabilization
  13. Altmetric Badge
    Chapter 12 Cytochrome c Stabilization and Immobilization in Aerogels
  14. Altmetric Badge
    Chapter 13 Enzyme Immobilization and Mediation with Osmium Redox Polymers
  15. Altmetric Badge
    Chapter 14 Ferrocene-Modified Linear Poly(ethylenimine) for Enzymatic Immobilization and Electron Mediation
  16. Altmetric Badge
    Chapter 15 FAD-Dependent Glucose Dehydrogenase Immobilization and Mediation Within a Naphthoquinone Redox Polymer
  17. Altmetric Badge
    Chapter 16 Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes
  18. Altmetric Badge
    Chapter 17 Kinetic Measurements for Enzyme Immobilization
Attention for Chapter 12: Cytochrome c Stabilization and Immobilization in Aerogels
Altmetric Badge

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Cytochrome c Stabilization and Immobilization in Aerogels
Chapter number 12
Book title
Enzyme Stabilization and Immobilization
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6499-4_12
Pubmed ID
Book ISBNs
978-1-4939-6497-0, 978-1-4939-6499-4
Authors

Amanda S. Harper-Leatherman, Jean Marie Wallace, Debra R. Rolison, Harper-Leatherman, Amanda S., Wallace, Jean Marie, Rolison, Debra R.

Abstract

Sol-gel-derived aerogels are three-dimensional, nanoscale materials that combine large surface area with high porosity. These traits make them useful for any rate-critical chemical process, particularly sensing or electrochemical applications, once physical or chemical moieties are incorporated into the gels to add their functionality to the ultraporous scaffold. Incorporating biomolecules into aerogels, other than such rugged species as lipases or cellulose, has been challenging due to the inability of most biomolecules to remain structurally intact within the gels during the necessary supercritical fluid (SCF) processing. However, the heme protein cytochrome c (cyt.c) forms self-organized superstructures around gold (or silver) nanoparticles in buffer that can be encapsulated into wet gels as the sol undergoes gelation. The guest-host wet gel can then be processed to form composite aerogels in which cyt.c retains its characteristic visible absorption. The gold (or silver) nanoparticle-nucleated superstructures protect the majority of the protein from the harsh physicochemical conditions necessary to form an aerogel. The Au~cyt.c superstructures exhibit rapid gas-phase recognition of nitric oxide (NO) within the bioaerogel matrix, as facilitated by the high-quality pore structure of the aerogel, while remaining viable for weeks at room temperature. More recently, careful control of synthetic parameters (e.g., buffer concentration, protein concentration, SCF extraction rate) have allowed for the preparation of cyt.c-silica aerogels, sans nucleating nanoparticles; these bioaerogels also exhibit rapid gas-phase sensing while retaining protein structural stability.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 50%
Student > Bachelor 1 25%
Other 1 25%
Readers by discipline Count As %
Chemistry 2 50%
Agricultural and Biological Sciences 1 25%
Neuroscience 1 25%