↓ Skip to main content

RNA Nanotechnology and Therapeutics

Overview of attention for book
Cover of 'RNA Nanotechnology and Therapeutics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Overview of methods in RNA nanotechnology: synthesis, purification, and characterization of RNA nanoparticles.
  3. Altmetric Badge
    Chapter 2 Multiple Approaches for the Investigation of Bacterial Small Regulatory RNAs Self-assembly.
  4. Altmetric Badge
    Chapter 3 Measuring the Elasticity of Ribonucleotide(s)-Containing DNA Molecules Using AFM.
  5. Altmetric Badge
    Chapter 4 Silver nanoclusters for RNA nanotechnology: steps towards visualization and tracking of RNA nanoparticle assemblies.
  6. Altmetric Badge
    Chapter 5 Large scale purification of RNA nanoparticles by preparative ultracentrifugation.
  7. Altmetric Badge
    Chapter 6 HPLC Purification of RNA Aptamers up to 59 Nucleotides with Single-Nucleotide Resolution
  8. Altmetric Badge
    Chapter 7 Using RNA nanoparticles with thermostable motifs and fluorogenic modules for real-time detection of RNA folding and turnover in prokaryotic and eukaryotic cells.
  9. Altmetric Badge
    Chapter 8 Fluorescence Labeling of Short RNA by Oxidation at the 3′-End
  10. Altmetric Badge
    Chapter 9 Methods and assays for specific targeting and delivery of RNA nanoparticles to cancer metastases.
  11. Altmetric Badge
    Chapter 10 Functional assays for specific targeting and delivery of RNA nanoparticles to brain tumor.
  12. Altmetric Badge
    Chapter 11 Aptamer-Mediated Nanoparticle Interactions: From Oligonucleotide–Protein Complexes to SELEX Screens
  13. Altmetric Badge
    Chapter 12 Methods for Assembling B-Cell Lymphoma Specific and Internalizing Aptamer-siRNA Nanoparticles Via the Sticky Bridge.
  14. Altmetric Badge
    Chapter 13 A high-throughput screening assay for the functional delivery of splice-switching oligonucleotides in human melanoma cells.
  15. Altmetric Badge
    Chapter 14 Design, Assembly, and Evaluation of RNA-Protein Nanostructures.
  16. Altmetric Badge
    Chapter 15 Mapping RNA Interactions to Proteins in Virions Using CLIP-Seq
  17. Altmetric Badge
    Chapter 16 Mapping Protein–RNA Interactions by RCAP, RNA-Cross-Linking and Peptide Fingerprinting
Attention for Chapter 4: Silver nanoclusters for RNA nanotechnology: steps towards visualization and tracking of RNA nanoparticle assemblies.
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

wikipedia
1 Wikipedia page

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Silver nanoclusters for RNA nanotechnology: steps towards visualization and tracking of RNA nanoparticle assemblies.
Chapter number 4
Book title
RNA Nanotechnology and Therapeutics
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2562-9_4
Pubmed ID
Book ISBNs
978-1-4939-2561-2, 978-1-4939-2562-9
Authors

Afonin, Kirill A, Schultz, Danielle, Jaeger, Luc, Gwinn, Elisabeth, Shapiro, Bruce A, Kirill A. Afonin, Danielle Schultz, Luc Jaeger, Elisabeth Gwinn, Bruce A. Shapiro, Afonin, Kirill A., Shapiro, Bruce A.

Abstract

The growing interest in designing functionalized, RNA-based nanoparticles (NPs) for applications such as cancer therapeutics requires simple, efficient assembly assays. Common methods for tracking RNA assemblies such as native polyacrylamide gels and atomic force microscopy are often time-intensive and, therefore, undesirable. Here we describe a technique for rapid analysis of RNA NP assembly stages using the formation of fluorescent silver nanoclusters (Ag NCs). This method exploits the single-stranded specificity and sequence dependence of Ag NC formation to produce unique optical readouts for each stage of RNA NP assembly, obtained readily after synthesis.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 7%
Unknown 13 93%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 29%
Professor > Associate Professor 2 14%
Student > Ph. D. Student 2 14%
Professor 1 7%
Other 1 7%
Other 1 7%
Unknown 3 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 14%
Chemistry 2 14%
Physics and Astronomy 2 14%
Biochemistry, Genetics and Molecular Biology 1 7%
Mathematics 1 7%
Other 2 14%
Unknown 4 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 May 2019.
All research outputs
#7,475,259
of 22,852,911 outputs
Outputs from Methods in molecular biology
#2,324
of 13,128 outputs
Outputs of similar age
#105,784
of 353,257 outputs
Outputs of similar age from Methods in molecular biology
#169
of 997 outputs
Altmetric has tracked 22,852,911 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,128 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,257 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 997 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.