↓ Skip to main content

Mirtazapine adjunct for people with schizophrenia

Overview of attention for article published in Cochrane database of systematic reviews, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

3 tweeters

Readers on

71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Mirtazapine adjunct for people with schizophrenia
Published in
Cochrane database of systematic reviews, May 2018
DOI 10.1002/14651858.cd011943.pub2
Pubmed ID

Luke A Perry, Dhruvesh Ramson, Suzanne Stricklin


Many individuals who have a diagnosis of schizophrenia experience a range of distressing and debilitating symptoms. These can include positive symptoms (such as delusions, hallucinations, disorganised speech), cognitive symptoms (such as trouble focusing or paying attention or using information to make decisions), and negative symptoms (such as diminished emotional expression, avolition, alogia, and anhedonia). Antipsychotic drugs are often only partially effective, particularly in treating negative symptoms, indicating the need for additional treatment. Mirtazapine is an antidepressant drug that when taken in addition to an antipsychotic may offer some benefit for negative symptoms. To systematically assess the effects of mirtazapine as adjunct treatment for people with schizophrenia. The Information Specialist of Cochrane Schizophrenia searched the Cochrane Schizophrenia Group's Study-Based Register of Trials (including registries of clinical trials) up to May 2018. All randomised-controlled trials (RCTs) with useable data focusing on mirtazapine adjunct for people with schizophrenia. We extracted data independently. For binary outcomes, we calculated risk ratio (RR) and its 95% confidence interval (CI), on an intention-to-treat (ITT) basis. For continuous data, we estimated the mean difference (MD) between groups and its 95% CI. We employed a fixed-effect model for analyses. For included studies we assessed risk of bias and created 'Summary of findings' table using GRADE. We included nine RCTs with a total of 310 participants. All studies compared mirtazapine adjunct with placebo adjunct and were of short-term duration. We considered five studies to have a high risk of bias for either incomplete outcome data, selective reporting, or other bias.Our main outcomes of interest were clinically important change in mental state (negative and positive symptoms), leaving the study early for any reason, clinically important change in global state, clinically important change in quality of life, number of days in hospital and incidence of serious adverse events.One trial defined a reduction in the Scale for the Assessment of Negative Symptoms (SANS) overall score from baseline of at least 20% as no important response for negative symptoms. There was no evidence of a clear difference between the two treatments with similar numbers of participants from each group showing no important response to treatment (RR 0.81, 95% CI 0.57 to 1.14, 1 RCT, n = 20, very low-quality evidence).Clinically important change in positive symptoms was not reported, however, clinically important change in overall mental state was reported by two trials and data for this outcome showed a favourable effect for mirtazapine (RR 0.69, 95% CI 0.51 to 0.92; I2 = 75%, 2 RCTs, n = 77, very low-quality evidence). There was no evidence of a clear difference for numbers of participants leaving the study early (RR 1.03, 95% CI 0.64 to 1.66, 9 RCTs, n = 310, moderate-quality evidence), and no evidence of a clear difference in global state Clinical Global Impressions Scale (CGI) severity scores (MD -0.10, 95% CI -0.68 to 0.48, 1 RCT, n = 39, very low-quality evidence). A favourable effect for mirtazapine adjunct was found for the outcome clinically important change in akathisia (RR 0.33, 95% CI 0.20 to 0.52, 2 RCTs, n = 86, low-quality evidence; I2 = 61%I). No data were reported for quality life or number of days in hospital.In addition to the main outcomes of interest, there was evidence relating to adverse events that the mirtazapine adjunct groups were associated with an increased risk of weight gain (RR 3.19, 95% CI 1.17 to 8.65, 4 RCTs, n = 127) and sedation/drowsiness (RR 1.64, 95% CI 1.01 to 2.68, 7 RCTs, n = 223). The available evidence is primarily of very low quality and indicates that mirtazapine adjunct is not clearly associated with an effect for negative symptoms, but there is some indication of a positive effect on overall mental state and akathisia. No effect was found for global state or leaving the study early and data were not available for quality of life or service use. Due to limitations of the quality and applicability of the evidence it is not possible to make any firm conclusions, the role of mirtazapine adjunct in routine clinical practice remains unclear. This underscores the need for new high-quality evidence to further evaluate mirtazapine adjunct for schizophrenia.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 71 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 21 30%
Unspecified 15 21%
Student > Bachelor 9 13%
Researcher 7 10%
Other 5 7%
Other 14 20%
Readers by discipline Count As %
Medicine and Dentistry 19 27%
Unspecified 19 27%
Psychology 11 15%
Nursing and Health Professions 5 7%
Pharmacology, Toxicology and Pharmaceutical Science 4 6%
Other 13 18%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 July 2018.
All research outputs
of 13,189,004 outputs
Outputs from Cochrane database of systematic reviews
of 10,519 outputs
Outputs of similar age
of 269,649 outputs
Outputs of similar age from Cochrane database of systematic reviews
of 175 outputs
Altmetric has tracked 13,189,004 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,519 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.6. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 269,649 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 175 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.