↓ Skip to main content

Quantitative framework for ordered degradation of APC/C substrates

Overview of attention for article published in BMC Biology, November 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Quantitative framework for ordered degradation of APC/C substrates
Published in
BMC Biology, November 2015
DOI 10.1186/s12915-015-0205-6
Pubmed ID
Authors

Dan Lu, Juliet R. Girard, Weihan Li, Arda Mizrak, David O. Morgan

Abstract

During cell-cycle progression, substrates of a single master regulatory enzyme can be modified in a specific order. Here, we used experimental and computational approaches to dissect the quantitative mechanisms underlying the ordered degradation of the substrates of the ubiquitin ligase APC/C(Cdc20), a key regulator of chromosome segregation in mitosis. We show experimentally that the rate of catalysis varies with different substrates of APC/C(Cdc20). Using a computational model based on multi-step ubiquitination, we then show how changes in the interaction between a single substrate and APC/C(Cdc20) can alter the timing of degradation onset relative to APC/C(Cdc20) activation, while ensuring a fast degradation rate. Degradation timing and dynamics depend on substrate affinity for the enzyme as well as the catalytic rate at which the substrate is modified. When two substrates share the same pool of APC/C(Cdc20), their relative enzyme affinities and rates of catalysis influence the partitioning of APC/C(Cdc20) among substrates, resulting in substrate competition. Depending on how APC/C(Cdc20) is partitioned among its substrates, competition can have minor or major effects on the degradation of certain substrates. We show experimentally that increased expression of the early APC/C(Cdc20) substrate Clb5 does not delay the degradation of the later substrate securin, arguing against a role for competition with Clb5 in establishing securin degradation timing. The degradation timing of APC/C(Cdc20) substrates depends on the multi-step nature of ubiquitination, differences in substrate-APC/C(Cdc20) interactions, and competition among substrates. Our studies provide a conceptual framework for understanding how ordered modification can be established among substrates of the same regulatory enzyme, and facilitate our understanding of how precise temporal control is achieved by a small number of master regulators to ensure a successful cell division cycle.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 46 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 30%
Researcher 11 23%
Student > Bachelor 3 6%
Student > Postgraduate 3 6%
Student > Master 3 6%
Other 5 11%
Unknown 8 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 40%
Agricultural and Biological Sciences 16 34%
Chemistry 2 4%
Medicine and Dentistry 1 2%
Physics and Astronomy 1 2%
Other 0 0%
Unknown 8 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 July 2016.
All research outputs
#21,157,205
of 25,988,468 outputs
Outputs from BMC Biology
#56
of 723 outputs
Outputs of similar age
#201,903
of 275,822 outputs
Outputs of similar age from BMC Biology
#26
of 26 outputs
Altmetric has tracked 25,988,468 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 723 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 18.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,822 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.