↓ Skip to main content

Quantitative Proteomics by Mass Spectrometry

Overview of attention for book
Cover of 'Quantitative Proteomics by Mass Spectrometry'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards.
  3. Altmetric Badge
    Chapter 2 Quantitative Analysis of the Sirt5-Regulated Lysine Succinylation Proteome in Mammalian Cells.
  4. Altmetric Badge
    Chapter 3 Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy.
  5. Altmetric Badge
    Chapter 4 Label-Free Quantitation for Clinical Proteomics.
  6. Altmetric Badge
    Chapter 5 Proteogenomic Methods to Improve Genome Annotation
  7. Altmetric Badge
    Chapter 6 Mass Spectrometry-Based Quantitative O-GlcNAcomic Analysis.
  8. Altmetric Badge
    Chapter 7 Isolating and Quantifying Plasma HDL Proteins by Sequential Density Gradient Ultracentrifugation and Targeted Proteomics.
  9. Altmetric Badge
    Chapter 8 A Method for Label-Free, Differential Top-Down Proteomics. - PubMed - NCBI
  10. Altmetric Badge
    Chapter 9 Multiplexed Immunoaffinity Enrichment of Peptides with Anti-peptide Antibodies and Quantification by Stable Isotope Dilution Multiple Reaction Monitoring Mass Spectrometry.
  11. Altmetric Badge
    Chapter 10 High-Throughput Quantitative Proteomics Enabled by Mass Defect-Based 12-Plex DiLeu Isobaric Tags
  12. Altmetric Badge
    Chapter 11 Isotopic N,N-Dimethyl Leucine (iDiLeu) for Absolute Quantification of Peptides Using a Standard Curve Approach.
  13. Altmetric Badge
    Chapter 12 Selecting Optimal Peptides for Targeted Proteomic Experiments in Human Plasma Using In Vitro Synthesized Proteins as Analytical Standards.
  14. Altmetric Badge
    Chapter 13 Using the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted Proteomics Assays
  15. Altmetric Badge
    Chapter 14 Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS
  16. Altmetric Badge
    Chapter 15 Multiple and Selective Reaction Monitoring Using Triple Quadrupole Mass Spectrometer: Preclinical Large Cohort Analysis.
  17. Altmetric Badge
    Chapter 16 Methods for SWATH™: Data Independent Acquisition on TripleTOF Mass Spectrometers. - PubMed - NCBI
  18. Altmetric Badge
    Chapter 17 Measurement of Phosphorylated Peptides with Absolute Quantification.
  19. Altmetric Badge
    Chapter 18 Proteomic Analysis of Protein Turnover by Metabolic Whole Rodent Pulse-Chase Isotopic Labeling and Shotgun Mass Spectrometry Analysis
Attention for Chapter 18: Proteomic Analysis of Protein Turnover by Metabolic Whole Rodent Pulse-Chase Isotopic Labeling and Shotgun Mass Spectrometry Analysis
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Proteomic Analysis of Protein Turnover by Metabolic Whole Rodent Pulse-Chase Isotopic Labeling and Shotgun Mass Spectrometry Analysis
Chapter number 18
Book title
Quantitative Proteomics by Mass Spectrometry
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3524-6_18
Pubmed ID
Book ISBNs
978-1-4939-3522-2, 978-1-4939-3524-6
Authors

Savas, Jeffrey N, Park, Sung Kyu, Yates, John R, Jeffrey N. Savas, Sung Kyu Park, John R. Yates III, John R. Yates

Editors

Salvatore Sechi

Abstract

The analysis of protein half-life and degradation dynamics has proven critically important to our understanding of a broad and diverse set of biological conditions ranging from cancer to neurodegeneration. Historically these protein turnover measures have been performed in cells by monitoring protein levels after "pulse" labeling of newly synthesized proteins and subsequent chase periods. Comparing the level of labeled protein remaining as a function of time to the initial level reveals the protein's half-life. In this method we provide a detailed description of the workflow required for the determination of protein turnover rates on a whole proteome scale in vivo.Our approach starts with the metabolic labeling of whole rodents by restricting all the nitrogen in their diet to exclusively nitrogen-15 in the form of spirulina algae. After near complete organismal labeling with nitrogen-15, the rodents are then switched to a normal nitrogen-14 rich diet for time periods of days to years. Tissues are harvested, the extracts are fractionated, and the proteins are digested to peptides. Peptides are separated by multidimensional liquid chromatography and analyzed by high resolution orbitrap mass spectrometry (MS). The nitrogen-15 containing proteins are then identified and measured by the bioinformatic proteome analysis tools Sequest, DTASelect2, and Census. In this way, our metabolic pulse-chase approach reveals in vivo protein decay rates proteome-wide.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 18%
Student > Ph. D. Student 4 18%
Researcher 3 14%
Professor > Associate Professor 2 9%
Professor 2 9%
Other 4 18%
Unknown 3 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 18%
Neuroscience 3 14%
Chemistry 3 14%
Medicine and Dentistry 2 9%
Business, Management and Accounting 1 5%
Other 5 23%
Unknown 4 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 February 2016.
All research outputs
#15,357,941
of 22,846,662 outputs
Outputs from Methods in molecular biology
#5,346
of 13,127 outputs
Outputs of similar age
#230,882
of 393,581 outputs
Outputs of similar age from Methods in molecular biology
#545
of 1,470 outputs
Altmetric has tracked 22,846,662 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,127 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,581 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,470 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.