↓ Skip to main content

Hypoxia

Overview of attention for book
Attention for Chapter 16: Hypoxia
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Hypoxia
Chapter number 16
Book title
Hypoxia
Published in
Advances in experimental medicine and biology, June 2016
DOI 10.1007/978-1-4899-7678-9_16
Pubmed ID
Book ISBNs
978-1-4899-7676-5, 978-1-4899-7678-9
Authors

Speer, Rachel, Ratan, Rajiv R, Rachel Speer, Rajiv R. Ratan M.D., Ph.D., Rajiv R. Ratan

Editors

Robert C. Roach, Peter H. Hackett, Peter D. Wagner

Abstract

Homeostasis is the process by which cells adapt to stress and prevent or repair injury. Unique programs have evolved to sense and activate these homeostatic mechanisms and as such, homeostatic sensors may be potent therapeutic targets. The hypoxic response mediated by hypoxia inducible factor (HIF) downstream of oxygen sensing by HIF prolyl 4-hydroxylases (PHDs) has been well-studied, revealing cell-type specific regulation of HIF stability, activity, and transcriptional targets. HIF's paradoxical roles in nervous system development, physiology, and pathology arise from its complex roles in hypoxic adaptation and normoxic biology. Understanding how to engage the hypoxic response so as to recapitulate the protective mechanism of ischemic preconditioning is a high priority. Indeed, small molecules that activate the hypoxic response provide broad neuroprotection in several clinically relevant injury models. Screens for PHD inhibitors have identified novel therapeutics for neuroprotection that are ready to proceed to clinical trials for ischemic stroke. Better understanding the mechanisms of how to engage hypoxic adaption without altering development or physiology may identify additional novel therapeutic targets for diverse acute and chronic neuropathologies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 24%
Student > Ph. D. Student 4 19%
Student > Bachelor 3 14%
Student > Master 2 10%
Other 1 5%
Other 0 0%
Unknown 6 29%
Readers by discipline Count As %
Neuroscience 5 24%
Medicine and Dentistry 4 19%
Biochemistry, Genetics and Molecular Biology 2 10%
Chemistry 1 5%
Engineering 1 5%
Other 0 0%
Unknown 8 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 June 2016.
All research outputs
#14,856,117
of 22,879,161 outputs
Outputs from Advances in experimental medicine and biology
#2,269
of 4,951 outputs
Outputs of similar age
#212,659
of 352,154 outputs
Outputs of similar age from Advances in experimental medicine and biology
#33
of 113 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,951 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,154 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 113 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.