↓ Skip to main content

Hypoxia

Overview of attention for book
Attention for Chapter 3: Hypoxia
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Hypoxia
Chapter number 3
Book title
Hypoxia
Published in
Advances in experimental medicine and biology, June 2016
DOI 10.1007/978-1-4899-7678-9_3
Pubmed ID
Book ISBNs
978-1-4899-7676-5, 978-1-4899-7678-9
Authors

Archer, Stephen L, Stephen L. Archer

Editors

Robert C. Roach, Peter H. Hackett, Peter D. Wagner

Abstract

There is no cure for non-small-cell lung cancer (NSCLC) or pulmonary arterial hypertension (PAH). Therapies lack efficacy and/or are toxic, reflecting a failure to target disease abnormalities that are distinct from processes vital to normal cells. NSCLC and PAH share reversible mitochondrial-metabolic abnormalities which may offer selective therapeutic targets. The following mutually reinforcing, mitochondrial abnormalities favor proliferation, impair apoptosis, and are relatively restricted to PAH and cancer cells: (1) Epigenetic silencing of superoxide dismutase-2 (SOD2) by methylation of CpG islands creates a pseudohypoxic redox environment that causes normoxic activation of hypoxia inducible factor (HIF-1α). (2) HIF-1α increases expression of pyruvate dehydrogenase kinase (PDK), which impairs oxidative metabolism and promotes a glycolytic metabolic state. (3) Mitochondrial fragmentation, partially due to mitofusin-2 downregulation, promotes proliferation. This review focuses on the recent discovery that decreased expression of SOD2, a putative tumor-suppressor gene and the major source of H2O2, results from hypermethylation of CpG islands. In cancer and PAH hypermethylation of a site in the enhancer region of intron 2 inhibits SOD2 transcription. In normal PASMC, SOD2 siRNA decreases H2O2 and activates HIF-1α. In PAH, reduced SOD2 expression decreases H2O2, reduces the cytosol and thereby activates HIF-1α. This causes a glycolytic shift in metabolism and increases the proliferation/apoptosis ratio by downregulating Kv1.5 channels, increasing cytosolic calcium, and inhibiting caspases. The DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine, which restores SOD2 expression, corrects the proliferation/apoptosis imbalance in PAH and cancer cells. The specificity of PAH for lung vessels may relate to the selective upregulation of DNA methyltransferases that mediate CpG methylation in PASMC (DNA MT-1A and -3B). SOD2 augmentation inactivates HIF-1α in PAH PASMC and therapy with the SOD mimetic, MnTBAP, regresses experimental PAH. In conclusion, cancer and PAH share acquired mitochondrial abnormalities that increase proliferation and inhibit apoptosis, suggesting new therapeutic targets.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 25%
Student > Ph. D. Student 3 19%
Student > Doctoral Student 1 6%
Student > Bachelor 1 6%
Professor 1 6%
Other 2 13%
Unknown 4 25%
Readers by discipline Count As %
Medicine and Dentistry 3 19%
Biochemistry, Genetics and Molecular Biology 2 13%
Agricultural and Biological Sciences 2 13%
Psychology 1 6%
Veterinary Science and Veterinary Medicine 1 6%
Other 0 0%
Unknown 7 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 August 2016.
All research outputs
#12,961,619
of 22,879,161 outputs
Outputs from Advances in experimental medicine and biology
#1,741
of 4,951 outputs
Outputs of similar age
#177,165
of 352,154 outputs
Outputs of similar age from Advances in experimental medicine and biology
#17
of 113 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,951 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has gotten more attention than average, scoring higher than 63% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,154 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 113 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.