↓ Skip to main content

Progress in Motor Control

Overview of attention for book
Cover of 'Progress in Motor Control'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Modularity for Motor Control and Motor Learning
  3. Altmetric Badge
    Chapter 2 Synergies in Grasping
  4. Altmetric Badge
    Chapter 3 Encoding Temporal Features of Skilled Movements—What, Whether and How?
  5. Altmetric Badge
    Chapter 4 Predictability and Robustness in the Manipulation of Dynamically Complex Objects
  6. Altmetric Badge
    Chapter 5 Fifty Years of Physics of Living Systems
  7. Altmetric Badge
    Chapter 6 The Relationship Between Postural and Movement Stability
  8. Altmetric Badge
    Chapter 7 Principles of Motor Recovery After Neurological Injury Based on a Motor Control Theory
  9. Altmetric Badge
    Chapter 8 What Do TMS-Evoked Motor Potentials Tell Us About Motor Learning?
  10. Altmetric Badge
    Chapter 9 Motor Control of Human Spinal Cord Disconnected from the Brain and Under External Movement
  11. Altmetric Badge
    Chapter 10 Anticipation in Object Manipulation: Behavioral and Neural Correlates
  12. Altmetric Badge
    Chapter 11 Brain Plasticity and the Concept of Metaplasticity in Skilled Musicians
  13. Altmetric Badge
    Chapter 12 The Coordination Dynamics of Observational Learning: Relative Motion Direction and Relative Phase as Informational Content Linking Action-Perception to Action-Production
  14. Altmetric Badge
    Chapter 13 Rethinking the Study of Volition for Clinical Use
  15. Altmetric Badge
    Chapter 14 Motor Lateralization Provides a Foundation for Predicting and Treating Non-paretic Arm Motor Deficits in Stroke
  16. Altmetric Badge
    Chapter 15 Control of Cycling Limb Movements: Aspects for Rehabilitation
  17. Altmetric Badge
    Chapter 16 Impaired Voluntary Movement Control and Its Rehabilitation in Cerebral Palsy
  18. Altmetric Badge
    Chapter 17 Can Motor Recovery in Stroke Be Improved by Non-invasive Brain Stimulation?
  19. Altmetric Badge
    Chapter 18 Organizing and Reorganizing Coordination Patterns
  20. Altmetric Badge
    Chapter 19 A Computational Index to Describe Slacking During Robot Therapy
  21. Altmetric Badge
    Chapter 20 Toward a Proprioceptive Neural Interface that Mimics Natural Cortical Activity
  22. Altmetric Badge
    Chapter 21 Erratum to: Progress in Motor Control
Attention for Chapter 1: Modularity for Motor Control and Motor Learning
Altmetric Badge

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Modularity for Motor Control and Motor Learning
Chapter number 1
Book title
Progress in Motor Control
Published in
Advances in experimental medicine and biology, December 2016
DOI 10.1007/978-3-319-47313-0_1
Pubmed ID
Book ISBNs
978-3-31-947312-3, 978-3-31-947313-0
Authors

Andrea d’Avella

Editors

Jozsef Laczko, Mark L. Latash

Abstract

How the central nervous system (CNS) overcomes the complexity of multi-joint and multi-muscle control and how it acquires or adapts motor skills are fundamental and open questions in neuroscience. A modular architecture may simplify control by embedding features of both the dynamic behavior of the musculoskeletal system and of the task into a small number of modules and by directly mapping task goals into module combination parameters. Several studies of the electromyographic (EMG) activity recorded from many muscles during the performance of different tasks have shown that motor commands are generated by the combination of a small number of muscle synergies, coordinated recruitment of groups of muscles with specific amplitude balances or activation waveforms, thus supporting a modular organization of motor control. Modularity may also help understanding motor learning. In a modular architecture, acquisition of a new motor skill or adaptation of an existing skill after a perturbation may occur at the level of modules or at the level of module combinations. As learning or adapting an existing skill through recombination of modules is likely faster than learning or adapting a skill by acquiring new modules, compatibility with the modules predicts learning difficulty. A recent study in which human subjects used myoelectric control to move a mass in a virtual environment has tested this prediction. By altering the mapping between recorded muscle activity and simulated force applied on the mass, as in a complex surgical rearrangement of the tendons, it has been possible to show that it is easier to adapt to a perturbation that is compatible with the muscle synergies used to generate hand force than to a similar but incompatible perturbation. This result provides direct support for a modular organization of motor control and motor learning.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 71 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 23%
Student > Ph. D. Student 11 15%
Student > Master 11 15%
Student > Doctoral Student 6 8%
Student > Bachelor 6 8%
Other 11 15%
Unknown 10 14%
Readers by discipline Count As %
Engineering 19 27%
Neuroscience 12 17%
Medicine and Dentistry 10 14%
Sports and Recreations 5 7%
Nursing and Health Professions 2 3%
Other 6 8%
Unknown 17 24%