↓ Skip to main content

Haplotyping

Overview of attention for book
Cover of 'Haplotyping'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Haplotyping of Heterozygous SNPs in Genomic DNA Using Long-Range PCR.
  3. Altmetric Badge
    Chapter 2 Quantification and Sequencing of Crossover Recombinant Molecules from Arabidopsis Pollen DNA.
  4. Altmetric Badge
    Chapter 3 PacBio for Haplotyping in Gene Families
  5. Altmetric Badge
    Chapter 4 High Molecular Weight DNA Enrichment with Peptide Nucleic Acid Probes
  6. Altmetric Badge
    Chapter 5 High-Throughput Sequencing of the Major Histocompatibility Complex following Targeted Sequence Capture
  7. Altmetric Badge
    Chapter 6 Pedigree-Defined Haplotypes and Their Applications to Genetic Studies
  8. Altmetric Badge
    Chapter 7 Haplotyping a Non-meiotic Diploid Fungal Pathogen Using Induced Aneuploidies and SNP/CGH Microarray Analysis.
  9. Altmetric Badge
    Chapter 8 Whole-Genome Haplotyping of Single Sperm of Daphnia pulex (Crustacea, Anomopoda).
  10. Altmetric Badge
    Chapter 9 Chromosome-Range Whole-Genome High-Throughput Experimental Haplotyping by Single-Chromosome Microdissection
  11. Altmetric Badge
    Chapter 10 Phased Genome Sequencing Through Chromosome Sorting
  12. Altmetric Badge
    Chapter 11 Long Fragment Read (LFR) Technology: Cost-Effective, High-Quality Genome-Wide Molecular Haplotyping
  13. Altmetric Badge
    Chapter 12 Contiguity-Preserving Transposition Sequencing (CPT-Seq) for Genome-Wide Haplotyping, Assembly, and Single-Cell ATAC-Seq
  14. Altmetric Badge
    Chapter 13 A Fosmid Pool-Based Next Generation Sequencing Approach to Haplotype-Resolve Whole Genomes
  15. Altmetric Badge
    Chapter 14 Discovery of Rare Haplotypes by Typing Millions of Single-Molecules with Bead Emulsion Haplotyping (BEH)
  16. Altmetric Badge
    Chapter 15 Computational Haplotype Inference from Pooled Samples
Attention for Chapter 14: Discovery of Rare Haplotypes by Typing Millions of Single-Molecules with Bead Emulsion Haplotyping (BEH)
Altmetric Badge

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Discovery of Rare Haplotypes by Typing Millions of Single-Molecules with Bead Emulsion Haplotyping (BEH)
Chapter number 14
Book title
Haplotyping
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6750-6_14
Pubmed ID
Book ISBNs
978-1-4939-6748-3, 978-1-4939-6750-6
Authors

Elisabeth Palzenberger, Ronja Reinhardt, Leila Muresan, Barbara Palaoro, Irene Tiemann-Boege

Editors

Irene Tiemann-Boege, Andrea Betancourt

Abstract

Characterizing polymorphisms on single molecules renders the phase of different alleles, and thus, haplotype information. Here, we describe a high-throughput method to genotype hundreds-of thousands single molecules in parallel using bead-emulsion haplotyping (BEH). Haplotyping via BEH is an emulsion-PCR-based method that was adapted to amplify multiple DNA fragments on paramagnetic, microscopic beads within a compartment formed by an aqueous-oil emulsion. This generates beads covered by thousands of clonal copies from several polymorphic regions of an initial DNA molecule that are then genotyped with fluorescently labeled probes. With BEH, up to three different polymorphisms (or more if several polymorphisms are within an amplicon) can be typed within a fragment of several kilobases in a singleexperiment, rendering haplotype information of a very large number of initial single molecules. The high throughput and digital nature of the method makes it ideal to quantify rare haplotypes or to assess the haplotype diversity in complex samples.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 22%
Student > Ph. D. Student 2 22%
Researcher 2 22%
Unspecified 1 11%
Professor > Associate Professor 1 11%
Other 0 0%
Unknown 1 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 33%
Biochemistry, Genetics and Molecular Biology 2 22%
Unspecified 1 11%
Chemical Engineering 1 11%
Physics and Astronomy 1 11%
Other 0 0%
Unknown 1 11%