↓ Skip to main content

Plant Pattern Recognition Receptors

Overview of attention for book
Cover of 'Plant Pattern Recognition Receptors'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Peptidoglycan Isolation and Binding Studies with LysM-Type Pattern Recognition Receptors
  3. Altmetric Badge
    Chapter 2 Characterization of Plant Cell Wall Damage-Associated Molecular Patterns Regulating Immune Responses
  4. Altmetric Badge
    Chapter 3 Methods of Isolation and Characterization of Oligogalacturonide Elicitors
  5. Altmetric Badge
    Chapter 4 Quantitative Analysis of Ligand-Induced Endocytosis of FLAGELLIN-SENSING 2 Using Automated Image Segmentation
  6. Altmetric Badge
    Chapter 5 Analysis for Protein Glycosylation of Pattern Recognition Receptors in Plants
  7. Altmetric Badge
    Chapter 6 Assays to Investigate the N-Glycosylation State and Function of Plant Pattern Recognition Receptors
  8. Altmetric Badge
    Chapter 7 Steady-State and Kinetics-Based Affinity Determination in Effector-Effector Target Interactions
  9. Altmetric Badge
    Chapter 8 In Vitro Ubiquitination Activity Assays in Plant Immune Responses
  10. Altmetric Badge
    Chapter 9 Bioinformatics Analysis of the Receptor-Like Kinase (RLK) Superfamily
  11. Altmetric Badge
    Chapter 10 Identification of MAPK Substrates Using Quantitative Phosphoproteomics
  12. Altmetric Badge
    Chapter 11 Analysis of PAMP-Triggered ROS Burst in Plant Immunity
  13. Altmetric Badge
    Chapter 12 MAPK Assays in Arabidopsis MAMP-PRR Signal Transduction
  14. Altmetric Badge
    Chapter 13 LeEIX2 Interactors’ Analysis and EIX-Mediated Responses Measurement
  15. Altmetric Badge
    Chapter 14 CDPK Activation in PRR Signaling
  16. Altmetric Badge
    Chapter 15 Chitin and Stress Induced Protein Kinase Activation
  17. Altmetric Badge
    Chapter 16 Measuring Callose Deposition, an Indicator of Cell Wall Reinforcement, During Bacterial Infection in Arabidopsis
  18. Altmetric Badge
    Chapter 17 Quantitative Evaluation of Plant Actin Cytoskeletal Organization During Immune Signaling
  19. Altmetric Badge
    Chapter 18 Network Reconstitution for Quantitative Subnetwork Interaction Analysis
  20. Altmetric Badge
    Chapter 19 Stomatal Bioassay to Characterize Bacterial-Stimulated PTI at the Pre-Invasion Phase of Infection
  21. Altmetric Badge
    Chapter 20 Using Clear Nail Polish to Make Arabidopsis Epidermal Impressions for Measuring the Change of Stomatal Aperture Size in Immune Response
  22. Altmetric Badge
    Chapter 21 Characterizing the Immune-Eliciting Activity of Putative Microbe-Associated Molecular Patterns in Tomato
  23. Altmetric Badge
    Chapter 22 Genome-Wide Analysis of Chromatin Accessibility in Arabidopsis Infected with Pseudomonas syringae
  24. Altmetric Badge
    Chapter 23 Small RNA and mRNA Profiling of Arabidopsis in Response to Phytophthora Infection and PAMP Treatment
  25. Altmetric Badge
    Chapter 24 Mapping and Cloning of Chemical Induced Mutations by Whole-Genome Sequencing of Bulked Segregants
  26. Altmetric Badge
    Chapter 25 Rapid Construction of Multiplexed CRISPR-Cas9 Systems for Plant Genome Editing
  27. Altmetric Badge
    Chapter 26 Chitin-Triggered MAPK Activation and ROS Generation in Rice Suspension-Cultured Cells
  28. Altmetric Badge
    Chapter 27 Chitin-Induced Responses in the Moss Physcomitrella patens
  29. Altmetric Badge
    Chapter 28 Methods to Quantify PAMP-Triggered Oxidative Burst, MAP Kinase Phosphorylation, Gene Expression, and Lignification in Brassicas
  30. Altmetric Badge
    Chapter 29 Effectoromics-Based Identification of Cell Surface Receptors in Potato
Attention for Chapter 25: Rapid Construction of Multiplexed CRISPR-Cas9 Systems for Plant Genome Editing
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Rapid Construction of Multiplexed CRISPR-Cas9 Systems for Plant Genome Editing
Chapter number 25
Book title
Plant Pattern Recognition Receptors
Published in
Methods in molecular biology, February 2017
DOI 10.1007/978-1-4939-6859-6_25
Pubmed ID
Book ISBNs
978-1-4939-6858-9, 978-1-4939-6859-6
Authors

Levi Lowder, Aimee Malzahn, Yiping Qi

Editors

Libo Shan, Ping He

Abstract

Multiplex CRISPR-Cas9 nuclease mediated genome editing is an efficient method for disrupting gene function in plants. Use of CRISPR-Cas9 has escalated rapidly in recent years and is expected to become routine practice in molecular biology and related fields of research. Due to the relatively novel and widespread adoption of this technology, first-time users may not have regular access to experienced guidance or technical support from peers or mentors. Here, we offer guidance and technical support in the form of a detailed and tested protocol for simultaneous targeting of three separate loci on the TRANSPARENT TESTA 4 (TT4) gene in Arabidopsis thaliana using multiplex CRISPR-Cas9. Although we target multiple loci on a single gene in Arabidopsis, the same approach can be used to target multiple genes or alleles in other plant species as well. We recommend the use of a molecular toolkit to streamline the process and make recommendations for this type of approach. The protocol starts with an overview of the reagents and covers designing of gRNAs and assembly of components into a final T-DNA delivery molecule through Golden Gate cloning and Multisite Gateway LR recombination.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 24%
Student > Ph. D. Student 5 15%
Student > Master 4 12%
Other 3 9%
Unspecified 1 3%
Other 4 12%
Unknown 9 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 47%
Biochemistry, Genetics and Molecular Biology 5 15%
Business, Management and Accounting 1 3%
Unspecified 1 3%
Economics, Econometrics and Finance 1 3%
Other 3 9%
Unknown 7 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 March 2018.
All research outputs
#14,052,256
of 22,957,478 outputs
Outputs from Methods in molecular biology
#3,956
of 13,137 outputs
Outputs of similar age
#170,428
of 310,771 outputs
Outputs of similar age from Methods in molecular biology
#56
of 261 outputs
Altmetric has tracked 22,957,478 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,137 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,771 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 261 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.