↓ Skip to main content

Wheat Rust Diseases

Overview of attention for book
Cover of 'Wheat Rust Diseases'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Wheat Rust Surveillance: Field Disease Scoring and Sample Collection for Phenotyping and Molecular Genotyping
  3. Altmetric Badge
    Chapter 2 Field Pathogenomics: An Advanced Tool for Wheat Rust Surveillance
  4. Altmetric Badge
    Chapter 3 Race Typing of Puccinia striiformis on Wheat
  5. Altmetric Badge
    Chapter 4 Assessment of Aggressiveness of Puccinia striiformis on Wheat
  6. Altmetric Badge
    Chapter 5 Extraction of High Molecular Weight DNA from Fungal Rust Spores for Long Read Sequencing
  7. Altmetric Badge
    Chapter 6 Microsatellite Genotyping of the Wheat Yellow Rust Pathogen Puccinia striiformis
  8. Altmetric Badge
    Chapter 7 Computational Methods for Predicting Effectors in Rust Pathogens
  9. Altmetric Badge
    Chapter 8 Protein–Protein Interaction Assays with Effector–GFP Fusions in Nicotiana benthamiana
  10. Altmetric Badge
    Chapter 9 Proteome Profiling by 2D–Liquid Chromatography Method for Wheat–Rust Interaction
  11. Altmetric Badge
    Chapter 10 Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing
  12. Altmetric Badge
    Chapter 11 Apoplastic Sugar Extraction and Quantification from Wheat Leaves Infected with Biotrophic Fungi
  13. Altmetric Badge
    Chapter 12 Genetic Analysis of Resistance to Wheat Rusts
  14. Altmetric Badge
    Chapter 13 Advances in Identification and Mapping of Rust Resistance Genes in Wheat
  15. Altmetric Badge
    Chapter 14 Chromosome Engineering Techniques for Targeted Introgression of Rust Resistance from Wild Wheat Relatives
  16. Altmetric Badge
    Chapter 15 Applications of Genomic Selection in Breeding Wheat for Rust Resistance
  17. Altmetric Badge
    Chapter 16 Rapid Phenotyping Adult Plant Resistance to Stem Rust in Wheat Grown under Controlled Conditions
  18. Altmetric Badge
    Chapter 17 Generation of Loss-of-Function Mutants for Wheat Rust Disease Resistance Gene Cloning
  19. Altmetric Badge
    Chapter 18 Isolation of Wheat Genomic DNA for Gene Mapping and Cloning
  20. Altmetric Badge
    Chapter 19 MutRenSeq: A Method for Rapid Cloning of Plant Disease Resistance Genes
  21. Altmetric Badge
    Chapter 20 Rapid Gene Isolation Using MutChromSeq
  22. Altmetric Badge
    Chapter 21 Rapid Identification of Rust Resistance Genes Through Cultivar-Specific De Novo Chromosome Assemblies
  23. Altmetric Badge
    Chapter 22 BSMV-Induced Gene Silencing Assay for Functional Analysis of Wheat Rust Resistance
  24. Altmetric Badge
    Chapter 23 Yeast as a Heterologous System to Functionally Characterize a Multiple Rust Resistance Gene that Encodes a Hexose Transporter
  25. Altmetric Badge
    Chapter 24 Biocontrol Agents for Controlling Wheat Rust
Attention for Chapter 11: Apoplastic Sugar Extraction and Quantification from Wheat Leaves Infected with Biotrophic Fungi
Altmetric Badge

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Apoplastic Sugar Extraction and Quantification from Wheat Leaves Infected with Biotrophic Fungi
Chapter number 11
Book title
Wheat Rust Diseases
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7249-4_11
Pubmed ID
Book ISBNs
978-1-4939-7248-7, 978-1-4939-7249-4
Authors

Veronica Roman-Reyna, John P. Rathjen, Roman-Reyna, Veronica, Rathjen, John P.

Abstract

Biotrophic fungi such as rusts modify the nutrient status of their hosts by extracting sugars. Hemibiotrophic and biotrophic fungi obtain nutrients from the cytoplasm of host cells and/or the apoplastic spaces. Uptake of nutrients from the cytoplasm is via intracellular hyphae or more complex structures such as haustoria. Apoplastic nutrients are taken up by intercellular hyphae. Overall the infection creates a sink causing remobilization of nutrients from local and distal tissues. The main mobile sugar in plants is sucrose which is absorbed via plant or fungal transporters once unloaded into the cytoplasm or the apoplast. Infection by fungal pathogens alters the apoplastic sugar contents and stimulates the influx of nutrients towards the site of infection as the host tissue transitions to sink. Quantification of solutes in the apoplast can help to understand the allocation of nutrients during infection. However, separation of apoplastic fluids from whole tissue is not straightforward and leakage from damaged cells can alter the results of the extraction. Here, we describe how variation in cytoplasmic contamination and infiltrated leaf volumes must be controlled when extracting apoplastic fluids from healthy and rust-infected wheat leaves. We show the importance of correcting the data for these parameters to measure sugar concentrations accurately.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 29%
Unspecified 1 14%
Unknown 4 57%
Readers by discipline Count As %
Unspecified 1 14%
Agricultural and Biological Sciences 1 14%
Unknown 5 71%