↓ Skip to main content

Protein Amyloid Aggregation

Overview of attention for book
Cover of 'Protein Amyloid Aggregation'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Semisynthesis and Enzymatic Preparation of Post-translationally Modified α-Synuclein.
  3. Altmetric Badge
    Chapter 2 Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies.
  4. Altmetric Badge
    Chapter 3 Intermolecular Paramagnetic Relaxation Enhancement (PRE) Studies of Transient Complexes in Intrinsically Disordered Proteins.
  5. Altmetric Badge
    Chapter 4 Detection of Helical Intermediates During Amyloid Formation by Intrinsically Disordered Polypeptides and Proteins.
  6. Altmetric Badge
    Chapter 5 Fluorescence Correlation Spectroscopy: A Tool to Study Protein Oligomerization and Aggregation In Vitro and In Vivo.
  7. Altmetric Badge
    Chapter 6 Deep UV Resonance Raman Spectroscopy for Characterizing Amyloid Aggregation
  8. Altmetric Badge
    Chapter 7 Analyzing Tau Aggregation with Electron Microscopy.
  9. Altmetric Badge
    Chapter 8 Characterization of Amyloid Oligomers by Electrospray Ionization-Ion Mobility Spectrometry-Mass Spectrometry (ESI-IMS-MS).
  10. Altmetric Badge
    Chapter 9 Formation and Characterization of α-Synuclein Oligomers.
  11. Altmetric Badge
    Chapter 10 Fluorescence Methods for Unraveling Oligomeric Amyloid Intermediates
  12. Altmetric Badge
    Chapter 11 Preparation of Amyloid Fibrils for Magic-Angle Spinning Solid-State NMR Spectroscopy
  13. Altmetric Badge
    Chapter 12 Spin Labeling and Characterization of Tau Fibrils Using Electron Paramagnetic Resonance (EPR).
  14. Altmetric Badge
    Chapter 13 Preparation of Crystalline Samples of Amyloid Fibrils and Oligomers
  15. Altmetric Badge
    Chapter 14 Quenched Hydrogen Exchange NMR of Amyloid Fibrils
  16. Altmetric Badge
    Chapter 15 Studying the Early Stages of Protein Aggregation Using Replica Exchange Molecular Dynamics Simulations
  17. Altmetric Badge
    Chapter 16 Computational Methods for Structural and Functional Studies of Alzheimer's Amyloid Ion Channels.
  18. Altmetric Badge
    Chapter 17 Analyzing Ensembles of Amyloid Proteins Using Bayesian Statistics
  19. Altmetric Badge
    Chapter 18 In Vitro Studies of Membrane Permeability Induced by Amyloidogenic Polypeptides Using Large Unilamellar Vesicles
  20. Altmetric Badge
    Chapter 19 Cell Models to Study Cell-to-Cell Transmission of α-Synuclein.
  21. Altmetric Badge
    Chapter 20 Preparation of Amyloid Fibrils Seeded from Brain and Meninges.
Attention for Chapter 15: Studying the Early Stages of Protein Aggregation Using Replica Exchange Molecular Dynamics Simulations
Altmetric Badge

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Studying the Early Stages of Protein Aggregation Using Replica Exchange Molecular Dynamics Simulations
Chapter number 15
Book title
Protein Amyloid Aggregation
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-2978-8_15
Pubmed ID
Book ISBNs
978-1-4939-2977-1, 978-1-4939-2978-8
Authors

Joan-Emma Shea, Zachary A. Levine

Abstract

The simulation of protein aggregation poses several computational challenges due to the disparate time and lengths scales that are involved. This chapter focuses on the use of atomistically detailed simulations to probe the initial steps of aggregation, with an emphasis on the Tau peptide as a model system, run under a replica exchange molecular dynamics protocol.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 50%
Researcher 2 17%
Unspecified 1 8%
Student > Doctoral Student 1 8%
Unknown 2 17%
Readers by discipline Count As %
Chemistry 4 33%
Biochemistry, Genetics and Molecular Biology 2 17%
Chemical Engineering 1 8%
Unspecified 1 8%
Neuroscience 1 8%
Other 1 8%
Unknown 2 17%