↓ Skip to main content

Chromosome and Genomic Engineering in Plants

Overview of attention for book
Cover of 'Chromosome and Genomic Engineering in Plants'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Production of Engineered Minichromosome Vectors via the Introduction of Telomere Sequences
  3. Altmetric Badge
    Chapter 2 Method for Biolistic Site-Specific Integration in Plants Catalyzed by Bxb1 Integrase
  4. Altmetric Badge
    Chapter 3 Protocol for In Vitro Stacked Molecules Compatible with In Vivo Recombinase-Mediated Gene Stacking
  5. Altmetric Badge
    Chapter 4 Chromosome and Genomic Engineering in Plants
  6. Altmetric Badge
    Chapter 5 One-Step Generation of Chromosomal Rearrangements in Rice
  7. Altmetric Badge
    Chapter 6 Genome Elimination by Tailswap CenH3: In Vivo Haploid Production in Arabidopsis thaliana
  8. Altmetric Badge
    Chapter 7 Chromosome and Genomic Engineering in Plants
  9. Altmetric Badge
    Chapter 8 CRISPR/Cas-Mediated Site-Specific Mutagenesis in Arabidopsis thaliana Using Cas9 Nucleases and Paired Nickases
  10. Altmetric Badge
    Chapter 9 Chromosome and Genomic Engineering in Plants
  11. Altmetric Badge
    Chapter 10 Seamless Genome Editing in Rice via Gene Targeting and Precise Marker Elimination
  12. Altmetric Badge
    Chapter 11 Chromosome and Genomic Engineering in Plants
  13. Altmetric Badge
    Chapter 12 Chromosome and Genomic Engineering in Plants
  14. Altmetric Badge
    Chapter 13 Image Analysis of DNA Fiber and Nucleus in Plants
  15. Altmetric Badge
    Chapter 14 Chromosome and Genomic Engineering in Plants
  16. Altmetric Badge
    Chapter 15 Chromosome and Genomic Engineering in Plants
  17. Altmetric Badge
    Chapter 16 Chromosome and Genomic Engineering in Plants
  18. Altmetric Badge
    Chapter 17 Mapping of T-DNA and Ac/Ds by TAIL-PCR to Analyze Chromosomal Rearrangements
Attention for Chapter 4: Chromosome and Genomic Engineering in Plants
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
3 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Chromosome and Genomic Engineering in Plants
Chapter number 4
Book title
Chromosome and Genomic Engineering in Plants
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-4931-1_4
Pubmed ID
Book ISBNs
978-1-4939-4929-8, 978-1-4939-4931-1
Authors

Xuan, Yuan Hu, Peterson, Thomas, Han, Chang-Deok, Yuan Hu Xuan, Thomas Peterson, Chang-deok Han

Abstract

Closely-located transposable elements (TEs) have been known to induce chromosomal breakage and rearrangements via alternative transposition. To study genome rearrangements in rice, an Ac/Ds system has been employed. This system comprises an immobile Ac element expressed under the control of CaMV 35S promoter, and a modified Ds element. A starter line carried Ac and a single copy of Ds at the OsRLG5 (Oryza sativa receptor-like gene 5). To enhance the transpositional activity, seed-derived calli were cultured and regenerated into plants. Among 270 lines regenerated from the starter, one line was selected that contained a pair of inversely-oriented Ds elements at the OsRLG5 (Oryza sativa receptor-like gene 5). The selected line was again subjected to tissue culture to obtain a regenerant population. Among 300 regenerated plants, 107 (36 %) contained chromosomal rearrangements including deletions, duplications, and inversions of various sizes. From 34 plants, transposition mechanisms leading to such genomic rearrangements were analyzed. The rearrangements were induced by sister chromatid transposition (SCT), homologous recombination (HR), and single chromatid transposition (SLCT). Among them, 22 events (65 %) were found to be transmitted to the next generation. These results demonstrate a great potential of tissue culture regeneration and the Ac/Ds system in understanding alternative transposition mechanisms and in developing chromosome engineering in plants.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 August 2016.
All research outputs
#20,337,788
of 22,883,326 outputs
Outputs from Methods in molecular biology
#9,920
of 13,131 outputs
Outputs of similar age
#330,751
of 393,702 outputs
Outputs of similar age from Methods in molecular biology
#1,054
of 1,471 outputs
Altmetric has tracked 22,883,326 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,131 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,702 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,471 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.