↓ Skip to main content

Computational Toxicology

Overview of attention for book
Cover of 'Computational Toxicology'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Molecular Descriptors for Structure–Activity Applications: A Hands-On Approach
  3. Altmetric Badge
    Chapter 2 The OECD QSAR Toolbox Starts Its Second Decade
  4. Altmetric Badge
    Chapter 3 QSAR: What Else?
  5. Altmetric Badge
    Chapter 4 (Q)SARs as Adaptations to REACH Information Requirements
  6. Altmetric Badge
    Chapter 5 Machine Learning Methods in Computational Toxicology
  7. Altmetric Badge
    Chapter 6 Applicability Domain: A Step Toward Confident Predictions and Decidability for QSAR Modeling
  8. Altmetric Badge
    Chapter 7 Molecular Similarity in Computational Toxicology
  9. Altmetric Badge
    Chapter 8 Molecular Docking for Predictive Toxicology
  10. Altmetric Badge
    Chapter 9 Criteria and Application on the Use of Nontesting Methods within a Weight of Evidence Strategy
  11. Altmetric Badge
    Chapter 10 Characterization and Management of Uncertainties in Toxicological Risk Assessment: Examples from the Opinions of the European Food Safety Authority
  12. Altmetric Badge
    Chapter 11 Computational Toxicology and Drug Discovery
  13. Altmetric Badge
    Chapter 12 Approaching Pharmacological Space: Events and Components
  14. Altmetric Badge
    Chapter 13 Computational Toxicology Methods in Chemical Library Design and High-Throughput Screening Hit Validation
  15. Altmetric Badge
    Chapter 14 Enalos Suite: New Cheminformatics Platform for Drug Discovery and Computational Toxicology
  16. Altmetric Badge
    Chapter 15 Ion Channels in Drug Discovery and Safety Pharmacology
  17. Altmetric Badge
    Chapter 16 Computational Approaches in Multitarget Drug Discovery
  18. Altmetric Badge
    Chapter 17 Nanoformulations for Drug Delivery: Safety, Toxicity, and Efficacy
  19. Altmetric Badge
    Chapter 18 Toxicity Potential of Nutraceuticals
  20. Altmetric Badge
    Chapter 19 Impact of Pharmaceuticals on the Environment: Risk Assessment Using QSAR Modeling Approach
  21. Altmetric Badge
    Chapter 20 (Q)SAR Methods for Predicting Genotoxicity and Carcinogenicity: Scientific Rationale and Regulatory Frameworks
  22. Altmetric Badge
    Chapter 21 Stem Cell-Based Methods to Predict Developmental Chemical Toxicity
  23. Altmetric Badge
    Chapter 22 Predicting Chemically Induced Skin Sensitization by Using In Chemico / In Vitro Methods
  24. Altmetric Badge
    Chapter 23 Hepatotoxicity Prediction by Systems Biology Modeling of Disturbed Metabolic Pathways Using Gene Expression Data
  25. Altmetric Badge
    Chapter 24 Nontest Methods to Predict Acute Toxicity: State of the Art for Applications of In Silico Methods
  26. Altmetric Badge
    Chapter 25 Predictive Systems Toxicology
  27. Altmetric Badge
    Chapter 26 Chemoinformatic Approach to Assess Toxicity of Ionic Liquids
  28. Altmetric Badge
    Chapter 27 Prediction of Biochemical Endpoints by the CORAL Software: Prejudices, Paradoxes, and Results
Attention for Chapter 14: Enalos Suite: New Cheminformatics Platform for Drug Discovery and Computational Toxicology
Altmetric Badge

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Enalos Suite: New Cheminformatics Platform for Drug Discovery and Computational Toxicology
Chapter number 14
Book title
Computational Toxicology
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7899-1_14
Pubmed ID
Book ISBNs
978-1-4939-7898-4, 978-1-4939-7899-1
Authors

Dimitra-Danai Varsou, Spyridon Nikolakopoulos, Andreas Tsoumanis, Georgia Melagraki, Antreas Afantitis

Abstract

In this chapter we present and discuss, with the aid of several representative case studies from drug discovery and computational toxicology, a new cheminformatics platform, Enalos Suite, that was developed with open source and freely available software. Enalos Suite ( http://enalossuite.novamechanics.com/ ) was designed and developed as a useful tool to address a variety of cheminformatics problems, given that it expedites tasks performed in predictive modeling and allows access, data mining and manipulation for multiple chemical databases (PubChem, UniChem, etc.). Enalos Suite was carefully designed to permit its extension and adjustment to the special field of interest of each user, including, for instance, nanoinformatics, biomedical, and other applications. To demonstrate the functionalities of Enalos Suite that are useful in different cheminformatics applications, we present indicative case studies that include the exploitation of chemical databases within a drug discovery project, the calculation of molecular descriptors, and finally the development of a predictive QSAR model validated according to OECD principles. We aspire that at the end of this chapter, the reader will capture the effectiveness of different functionalities included in the Enalos Suite that could be of significant value in a multitude of cheminformatics applications.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Other 2 22%
Student > Bachelor 2 22%
Professor 1 11%
Student > Master 1 11%
Researcher 1 11%
Other 1 11%
Unknown 1 11%
Readers by discipline Count As %
Chemistry 3 33%
Agricultural and Biological Sciences 1 11%
Business, Management and Accounting 1 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 11%
Engineering 1 11%
Other 0 0%
Unknown 2 22%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 July 2018.
All research outputs
#10,498,279
of 13,171,980 outputs
Outputs from Methods in molecular biology
#4,367
of 8,463 outputs
Outputs of similar age
#201,666
of 268,716 outputs
Outputs of similar age from Methods in molecular biology
#1
of 1 outputs
Altmetric has tracked 13,171,980 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,463 research outputs from this source. They receive a mean Attention Score of 2.1. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,716 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them