↓ Skip to main content

Computational Toxicology

Overview of attention for book
Cover of 'Computational Toxicology'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Molecular Descriptors for Structure–Activity Applications: A Hands-On Approach
  3. Altmetric Badge
    Chapter 2 The OECD QSAR Toolbox Starts Its Second Decade
  4. Altmetric Badge
    Chapter 3 QSAR: What Else?
  5. Altmetric Badge
    Chapter 4 (Q)SARs as Adaptations to REACH Information Requirements
  6. Altmetric Badge
    Chapter 5 Machine Learning Methods in Computational Toxicology
  7. Altmetric Badge
    Chapter 6 Applicability Domain: A Step Toward Confident Predictions and Decidability for QSAR Modeling
  8. Altmetric Badge
    Chapter 7 Molecular Similarity in Computational Toxicology
  9. Altmetric Badge
    Chapter 8 Molecular Docking for Predictive Toxicology
  10. Altmetric Badge
    Chapter 9 Criteria and Application on the Use of Nontesting Methods within a Weight of Evidence Strategy
  11. Altmetric Badge
    Chapter 10 Characterization and Management of Uncertainties in Toxicological Risk Assessment: Examples from the Opinions of the European Food Safety Authority
  12. Altmetric Badge
    Chapter 11 Computational Toxicology and Drug Discovery
  13. Altmetric Badge
    Chapter 12 Approaching Pharmacological Space: Events and Components
  14. Altmetric Badge
    Chapter 13 Computational Toxicology Methods in Chemical Library Design and High-Throughput Screening Hit Validation
  15. Altmetric Badge
    Chapter 14 Enalos Suite: New Cheminformatics Platform for Drug Discovery and Computational Toxicology
  16. Altmetric Badge
    Chapter 15 Ion Channels in Drug Discovery and Safety Pharmacology
  17. Altmetric Badge
    Chapter 16 Computational Approaches in Multitarget Drug Discovery
  18. Altmetric Badge
    Chapter 17 Nanoformulations for Drug Delivery: Safety, Toxicity, and Efficacy
  19. Altmetric Badge
    Chapter 18 Toxicity Potential of Nutraceuticals
  20. Altmetric Badge
    Chapter 19 Impact of Pharmaceuticals on the Environment: Risk Assessment Using QSAR Modeling Approach
  21. Altmetric Badge
    Chapter 20 (Q)SAR Methods for Predicting Genotoxicity and Carcinogenicity: Scientific Rationale and Regulatory Frameworks
  22. Altmetric Badge
    Chapter 21 Stem Cell-Based Methods to Predict Developmental Chemical Toxicity
  23. Altmetric Badge
    Chapter 22 Predicting Chemically Induced Skin Sensitization by Using In Chemico / In Vitro Methods
  24. Altmetric Badge
    Chapter 23 Hepatotoxicity Prediction by Systems Biology Modeling of Disturbed Metabolic Pathways Using Gene Expression Data
  25. Altmetric Badge
    Chapter 24 Nontest Methods to Predict Acute Toxicity: State of the Art for Applications of In Silico Methods
  26. Altmetric Badge
    Chapter 25 Predictive Systems Toxicology
  27. Altmetric Badge
    Chapter 26 Chemoinformatic Approach to Assess Toxicity of Ionic Liquids
  28. Altmetric Badge
    Chapter 27 Prediction of Biochemical Endpoints by the CORAL Software: Prejudices, Paradoxes, and Results
Attention for Chapter 25: Predictive Systems Toxicology
Altmetric Badge

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Predictive Systems Toxicology
Chapter number 25
Book title
Computational Toxicology
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7899-1_25
Pubmed ID
Book ISBNs
978-1-4939-7898-4, 978-1-4939-7899-1
Authors

Narsis A. Kiani, Ming-Mei Shang, Hector Zenil, Jesper Tegner, Kiani, Narsis A., Shang, Ming-Mei, Zenil, Hector, Tegner, Jesper

Abstract

In this review we address to what extent computational techniques can augment our ability to predict toxicity. The first section provides a brief history of empirical observations on toxicity dating back to the dawn of Sumerian civilization. Interestingly, the concept of dose emerged very early on, leading up to the modern emphasis on kinetic properties, which in turn encodes the insight that toxicity is not solely a property of a compound but instead depends on the interaction with the host organism. The next logical step is the current conception of evaluating drugs from a personalized medicine point of view. We review recent work on integrating what could be referred to as classical pharmacokinetic analysis with emerging systems biology approaches incorporating multiple omics data. These systems approaches employ advanced statistical analytical data processing complemented with machine learning techniques and use both pharmacokinetic and omics data. We find that such integrated approaches not only provide improved predictions of toxicity but also enable mechanistic interpretations of the molecular mechanisms underpinning toxicity and drug resistance. We conclude the chapter by discussing some of the main challenges, such as how to balance the inherent tension between the predicitive capacity of models, which in practice amounts to constraining the number of features in the models versus allowing for rich mechanistic interpretability, i.e., equipping models with numerous molecular features. This challenge also requires patient-specific predictions on toxicity, which in turn requires proper stratification of patients as regards how they respond, with or without adverse toxic effects. In summary, the transformation of the ancient concept of dose is currently successfully operationalized using rich integrative data encoded in patient-specific models.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 27%
Professor 5 10%
Student > Bachelor 5 10%
Other 4 8%
Student > Ph. D. Student 4 8%
Other 10 21%
Unknown 7 15%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 6 13%
Computer Science 6 13%
Medicine and Dentistry 6 13%
Agricultural and Biological Sciences 6 13%
Biochemistry, Genetics and Molecular Biology 3 6%
Other 10 21%
Unknown 11 23%