↓ Skip to main content

Molecular Motors

Overview of attention for book
Cover of 'Molecular Motors'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Cellular and Nuclear Forces: An Overview
  3. Altmetric Badge
    Chapter 2 The Bacterial Flagellar Rotary Motor in Action
  4. Altmetric Badge
    Chapter 3 Purification and Reconstitution of Ilyobacter tartaricus ATP Synthase
  5. Altmetric Badge
    Chapter 4 Using Microfluidics Single Filament Assay to Study Formin Control of Actin Assembly
  6. Altmetric Badge
    Chapter 5 Engineering Synthetic Myosin Filaments Using DNA Nanotubes
  7. Altmetric Badge
    Chapter 6 Direct Imaging of Walking Myosin V by High-Speed Atomic Force Microscopy
  8. Altmetric Badge
    Chapter 7 High-Resolution Single-Molecule Kinesin Assays at kHz Frame Rates
  9. Altmetric Badge
    Chapter 8 Multicolor Tracking of Molecular Motors at Nanometer Resolution
  10. Altmetric Badge
    Chapter 9 High-Speed Optical Tweezers for the Study of Single Molecular Motors
  11. Altmetric Badge
    Chapter 10 Determining Stable Single Alpha Helical (SAH) Domain Properties by Circular Dichroism and Atomic Force Microscopy
  12. Altmetric Badge
    Chapter 11 The Role of Supercoiling in the Motor Activity of RNA Polymerases
  13. Altmetric Badge
    Chapter 12 Single-Molecule FRET Analysis of Replicative Helicases
  14. Altmetric Badge
    Chapter 13 Recombinases and Related Proteins in the Context of Homologous Recombination Analyzed by Molecular Microscopy
  15. Altmetric Badge
    Chapter 14 DNA Organization and Superesolved Segregation
  16. Altmetric Badge
    Chapter 15 Electrophoretic Analysis of the DNA Supercoiling Activity of DNA Gyrase
  17. Altmetric Badge
    Chapter 16 Single-Molecule Angular Optical Trapping for Studying Transcription Under Torsion
  18. Altmetric Badge
    Chapter 17 Anisotropy-Based Nucleosome Repositioning Assay
  19. Altmetric Badge
    Chapter 18 Remodeling and Repositioning of Nucleosomes in Nucleosomal Arrays
  20. Altmetric Badge
    Chapter 19 Measuring Unzipping and Rezipping of Single Long DNA Molecules with Optical Tweezers
  21. Altmetric Badge
    Chapter 20 Single-Molecule Measurements of Motor-Driven Viral DNA Packaging in Bacteriophages Phi29, Lambda, and T4 with Optical Tweezers
  22. Altmetric Badge
    Chapter 21 Methods for Single-Molecule Sensing and Detection Using Bacteriophage Phi29 DNA Packaging Motor
Attention for Chapter 1: Cellular and Nuclear Forces: An Overview
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Cellular and Nuclear Forces: An Overview
Chapter number 1
Book title
Molecular Motors
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-8556-2_1
Pubmed ID
Book ISBNs
978-1-4939-8554-8, 978-1-4939-8556-2
Authors

Bidisha Sinha, Arikta Biswas, Gautam V. Soni, Sinha, Bidisha, Biswas, Arikta, Soni, Gautam V.

Abstract

Biological cells sample their surrounding microenvironments using nanoscale force sensors on the cell surfaces. These surface-based force and stress sensors generate physical and chemical responses inside the cell. The inherently well-connected cytoskeleton and its physical contacts with the force elements on the nuclear membrane lead these physicochemical responses to cascade all the way inside the cell nucleus, physically altering the nuclear state. These physical alterations of the cell nucleus, through yet-unknown complex steps elicit physical and functional response from the chromatin in the form of altered gene expression profiles. This mechanism of force/stress sensing by the cell and then its nuclear response has been shown to play a vital role in maintaining robust cellular homeostasis, controlling gene expression profiles during developmental phases as well as cell differentiation. Over the last few years, there has been appreciable progress toward identification of the molecular players responsible for force sensing. However, the actual sensing mechanism of cell surface bound force sensors and more importantly cascading of the signals, both physical (via cytosolic force sensing elements such as microtubule and actin framework) and chemical (cascade of biochemical signaling from cell surface to nuclear surface and further to the chromatin), inside the cell is poorly understood. In this chapter, we present a review of the currently known molecular players in cellular as well as nuclear force sensing repertoire and their possible mechanistic aspects. We also introduce various biophysical concepts that are used to describe the force/stress sensing and response of a cell. We hope this will help asking clearer questions and designing pointed experiments for better understanding of the force-dependent design principles of the cell surface, nuclear surface, and gene expression.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 25%
Student > Master 3 19%
Researcher 3 19%
Professor > Associate Professor 2 13%
Other 1 6%
Other 1 6%
Unknown 2 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 25%
Agricultural and Biological Sciences 2 13%
Medicine and Dentistry 2 13%
Physics and Astronomy 2 13%
Mathematics 1 6%
Other 0 0%
Unknown 5 31%