↓ Skip to main content

SUMO Regulation of Cellular Processes

Overview of attention for book
Cover of 'SUMO Regulation of Cellular Processes'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to Sumoylation
  3. Altmetric Badge
    Chapter 2 Roles of Sumoylation in mRNA Processing and Metabolism
  4. Altmetric Badge
    Chapter 3 SUMO and Chromatin Remodeling
  5. Altmetric Badge
    Chapter 4 Functions of SUMO in the Maintenance of Genome Stability
  6. Altmetric Badge
    Chapter 5 Regulation of Cellular Processes by SUMO: Understudied Topics
  7. Altmetric Badge
    Chapter 6 The Molecular Interface Between the SUMO and Ubiquitin Systems
  8. Altmetric Badge
    Chapter 7 SUMO and Nucleocytoplasmic Transport
  9. Altmetric Badge
    Chapter 8 Sumo Modification of Ion Channels
  10. Altmetric Badge
    Chapter 9 The Roles of SUMO in Metabolic Regulation
  11. Altmetric Badge
    Chapter 10 The SUMO Pathway in Mitosis
  12. Altmetric Badge
    Chapter 11 Wrestling with Chromosomes: The Roles of SUMO During Meiosis.
  13. Altmetric Badge
    Chapter 12 Sumoylation in Development and Differentiation
  14. Altmetric Badge
    Chapter 13 The Role of Sumoylation in Senescence
  15. Altmetric Badge
    Chapter 14 Regulation of Plant Cellular and Organismal Development by SUMO.
  16. Altmetric Badge
    Chapter 15 SUMO in Drosophila Development
  17. Altmetric Badge
    Chapter 16 Sumoylation: Implications for Neurodegenerative Diseases
  18. Altmetric Badge
    Chapter 17 Sumoylation and Its Contribution to Cancer
  19. Altmetric Badge
    Chapter 18 Sumoylation Modulates the Susceptibility to Type 1 Diabetes
  20. Altmetric Badge
    Chapter 19 Sumoylation in Craniofacial Disorders
  21. Altmetric Badge
    Chapter 20 Coordination of Cellular Localization-Dependent Effects of Sumoylation in Regulating Cardiovascular and Neurological Diseases
  22. Altmetric Badge
    Chapter 21 Viral Interplay with the Host Sumoylation System
  23. Altmetric Badge
    Chapter 22 Sumoylation as an Integral Mechanism in Bacterial Infection and Disease Progression
Attention for Chapter 15: SUMO in Drosophila Development
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

wikipedia
1 Wikipedia page

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
SUMO in Drosophila Development
Chapter number 15
Book title
SUMO Regulation of Cellular Processes
Published in
Advances in experimental medicine and biology, February 2017
DOI 10.1007/978-3-319-50044-7_15
Pubmed ID
Book ISBNs
978-3-31-950043-0, 978-3-31-950044-7
Authors

Joseph Cao, Albert J. Courey, Cao, Joseph, Courey, Albert J.

Editors

Van G. Wilson

Abstract

The ubiquitin -like protein SUMO is conjugated covalently to hundreds of target proteins in organisms throughout the eukaryotic domain. Genetic and biochemical studies using the model organism Drosophila melanogaster are beginning to reveal many essential functions for SUMO in cell biology and development. For example, SUMO regulates multiple signaling pathways such as the Ras/MAPK, Dpp, and JNK pathways. In addition, SUMO regulates transcription through conjugation to many transcriptional regulatory proteins, including Bicoid, Spalt , Scm, and Groucho. In some cases, conjugation of SUMO to a target protein inhibits its normal activity, while in other cases SUMO conjugation stimulates target protein activity. SUMO often modulates a biological process by altering the subcellular localization of a target protein. The ability of SUMO and other ubiquitin-like proteins to diversify protein function may be critical to the evolution of developmental complexity.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 25%
Student > Master 2 25%
Unspecified 1 13%
Student > Doctoral Student 1 13%
Student > Ph. D. Student 1 13%
Other 0 0%
Unknown 1 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 38%
Biochemistry, Genetics and Molecular Biology 1 13%
Unspecified 1 13%
Immunology and Microbiology 1 13%
Neuroscience 1 13%
Other 0 0%
Unknown 1 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 October 2022.
All research outputs
#7,754,533
of 23,571,271 outputs
Outputs from Advances in experimental medicine and biology
#1,268
of 5,025 outputs
Outputs of similar age
#159,064
of 456,998 outputs
Outputs of similar age from Advances in experimental medicine and biology
#124
of 508 outputs
Altmetric has tracked 23,571,271 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,025 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 456,998 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 508 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.