↓ Skip to main content

SUMO Regulation of Cellular Processes

Overview of attention for book
Cover of 'SUMO Regulation of Cellular Processes'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to Sumoylation
  3. Altmetric Badge
    Chapter 2 Roles of Sumoylation in mRNA Processing and Metabolism
  4. Altmetric Badge
    Chapter 3 SUMO and Chromatin Remodeling
  5. Altmetric Badge
    Chapter 4 Functions of SUMO in the Maintenance of Genome Stability
  6. Altmetric Badge
    Chapter 5 Regulation of Cellular Processes by SUMO: Understudied Topics
  7. Altmetric Badge
    Chapter 6 The Molecular Interface Between the SUMO and Ubiquitin Systems
  8. Altmetric Badge
    Chapter 7 SUMO and Nucleocytoplasmic Transport
  9. Altmetric Badge
    Chapter 8 Sumo Modification of Ion Channels
  10. Altmetric Badge
    Chapter 9 The Roles of SUMO in Metabolic Regulation
  11. Altmetric Badge
    Chapter 10 The SUMO Pathway in Mitosis
  12. Altmetric Badge
    Chapter 11 Wrestling with Chromosomes: The Roles of SUMO During Meiosis.
  13. Altmetric Badge
    Chapter 12 Sumoylation in Development and Differentiation
  14. Altmetric Badge
    Chapter 13 The Role of Sumoylation in Senescence
  15. Altmetric Badge
    Chapter 14 Regulation of Plant Cellular and Organismal Development by SUMO.
  16. Altmetric Badge
    Chapter 15 SUMO in Drosophila Development
  17. Altmetric Badge
    Chapter 16 Sumoylation: Implications for Neurodegenerative Diseases
  18. Altmetric Badge
    Chapter 17 Sumoylation and Its Contribution to Cancer
  19. Altmetric Badge
    Chapter 18 Sumoylation Modulates the Susceptibility to Type 1 Diabetes
  20. Altmetric Badge
    Chapter 19 Sumoylation in Craniofacial Disorders
  21. Altmetric Badge
    Chapter 20 Coordination of Cellular Localization-Dependent Effects of Sumoylation in Regulating Cardiovascular and Neurological Diseases
  22. Altmetric Badge
    Chapter 21 Viral Interplay with the Host Sumoylation System
  23. Altmetric Badge
    Chapter 22 Sumoylation as an Integral Mechanism in Bacterial Infection and Disease Progression
Attention for Chapter 19: Sumoylation in Craniofacial Disorders
Altmetric Badge

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Sumoylation in Craniofacial Disorders
Chapter number 19
Book title
SUMO Regulation of Cellular Processes
Published in
Advances in experimental medicine and biology, February 2017
DOI 10.1007/978-3-319-50044-7_19
Pubmed ID
Book ISBNs
978-3-31-950043-0, 978-3-31-950044-7
Authors

Erwin Pauws, Philip Stanier

Editors

Van G. Wilson

Abstract

Craniofacial development requires a complex series of coordinated and finely tuned events to take place, during a relatively short time frame. These events are set in motion by switching on and off transcriptional cascades that involve the use of numerous signalling pathways and a multitude of factors that act at the site of gene transcription. It is now well known that amidst the subtlety of this process lies the intricate world of protein modification, and the posttranslational addition of the small ubiquitin -like modifier, SUMO, is an example that has been implicated in this process. Many proteins that are required for formation of various structures in the embryonic head and face adapt specific functions with SUMO modification. Interestingly, the main clinical phenotype reported for a disruption of the SUMO1 locus is the common birth defect cleft lip and palate. In this chapter therefore, we discuss the role of SUMO1 in craniofacial development, with emphasis on orofacial clefts. We suggest that these defects can be a sensitive indication of down regulated SUMO modification at a critical stage during embryogenesis. As well as specific mutations affecting the ability of particular proteins to be sumoylated, non-genetic events may have the effect of down-regulating the SUMO pathway to give the same result. Enzymes regulating the SUMO pathway may become important therapeutic targets in the preventative and treatment therapies for craniofacial defects in the future.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 18%
Researcher 3 18%
Lecturer > Senior Lecturer 1 6%
Student > Doctoral Student 1 6%
Professor 1 6%
Other 3 18%
Unknown 5 29%
Readers by discipline Count As %
Medicine and Dentistry 7 41%
Biochemistry, Genetics and Molecular Biology 3 18%
Engineering 1 6%
Unknown 6 35%