↓ Skip to main content

Hox Genes

Overview of attention for book
Cover of 'Hox Genes'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Discovery and Classification of Homeobox Genes in Animal Genomes
  3. Altmetric Badge
    Chapter 2 How to Study Hox Gene Expression and Function in Mammalian Oocytes and Early Embryos
  4. Altmetric Badge
    Chapter 3 Genetic Lineage Tracing Analysis of Anterior Hox Expressing Cells
  5. Altmetric Badge
    Chapter 4 A genetic strategy to obtain p-gal4 elements in the Drosophila hox genes.
  6. Altmetric Badge
    Chapter 5 Hox Complex Analysis Through BAC Recombineering
  7. Altmetric Badge
    Chapter 6 The Genetics of Murine Hox Loci: TAMERE, STRING, and PANTHERE to Engineer Chromosome Variants
  8. Altmetric Badge
    Chapter 7 Topological organization of Drosophila hox genes using DNA fluorescent in situ hybridization.
  9. Altmetric Badge
    Chapter 8 Mining the Cis-Regulatory Elements of Hox Clusters
  10. Altmetric Badge
    Chapter 9 Functional Analysis of Hox Genes in Zebrafish
  11. Altmetric Badge
    Chapter 10 Transgenesis in Non-model Organisms: The Case of Parhyale.
  12. Altmetric Badge
    Chapter 11 Tissue Specific RNA Isolation in Drosophila Embryos: A Strategy to Analyze Context Dependent Transcriptome Landscapes Using FACS.
  13. Altmetric Badge
    Chapter 12 Hox transcriptomics in Drosophila embryos.
  14. Altmetric Badge
    Chapter 13 Measuring Hox-DNA Binding by Electrophoretic Mobility Shift Analysis.
  15. Altmetric Badge
    Chapter 14 Chromatin immunoprecipitation and chromatin immunoprecipitation with massively parallel sequencing on mouse embryonic tissue.
  16. Altmetric Badge
    Chapter 15 ChIP for Hox Proteins from Drosophila Imaginal Discs.
  17. Altmetric Badge
    Chapter 16 SELEX-seq: A Method for Characterizing the Complete Repertoire of Binding Site Preferences for Transcription Factor Complexes.
  18. Altmetric Badge
    Chapter 17 DamID as an Approach to Studying Long-Distance Chromatin Interactions.
  19. Altmetric Badge
    Chapter 18 cgChIP: A Cell Type- and Gene-Specific Method for Chromatin Analysis.
  20. Altmetric Badge
    Chapter 19 Bimolecular Fluorescence Complementation (BiFC) in Live Drosophila Embryos.
  21. Altmetric Badge
    Chapter 20 Hox protein interactions: screening and network building.
  22. Altmetric Badge
    Chapter 21 Rational Drug Repurposing Using sscMap Analysis in a HOX-TALE Model of Leukemia
Attention for Chapter 7: Topological organization of Drosophila hox genes using DNA fluorescent in situ hybridization.
Altmetric Badge

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Topological organization of Drosophila hox genes using DNA fluorescent in situ hybridization.
Chapter number 7
Book title
Hox Genes
Published in
Methods in molecular biology, January 2014
DOI 10.1007/978-1-4939-1242-1_7
Pubmed ID
Book ISBNs
978-1-4939-1241-4, 978-1-4939-1242-1
Authors

Frédéric Bantignies, Giacomo Cavalli

Editors

Yacine Graba, René Rezsohazy

Abstract

DNA fluorescent in situ hybridization (FISH) is the method of choice to study genomic organization at the single-cell level. It has been recently used to study the topological organization of the homeotic bithorax complex (BX-C) in Drosophila as well as to describe long-range genomic interactions between the BX-C and the Antennapedia complex (ANT-C), in addition to other genomic loci. Coupled with immunofluorescence, FISH can be used to study the relative positioning of homeotic genes with nuclear subcompartments, such as Polycomb-group (PcG) bodies, transcription factories, or the nuclear lamina. Here, we describe two multicolor 3D-FISH protocols; one for whole mount Drosophila embryos or larval discs and one for Drosophila-cultured cells. Both methods can be applied to any single copy locus of interest and are compatible with immunostaining (FISH-I).

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 24%
Researcher 4 24%
Student > Doctoral Student 2 12%
Student > Master 1 6%
Professor 1 6%
Other 0 0%
Unknown 5 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 35%
Biochemistry, Genetics and Molecular Biology 5 29%
Materials Science 1 6%
Unknown 5 29%