↓ Skip to main content

Phosphodiesterases: CNS Functions and Diseases

Overview of attention for book
Cover of 'Phosphodiesterases: CNS Functions and Diseases'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Phosphodiesterase Diversity and Signal Processing Within cAMP Signaling Networks
  3. Altmetric Badge
    Chapter 2 Current Understanding of PDE10A in the Modulation of Basal Ganglia Circuitry
  4. Altmetric Badge
    Chapter 3 Interaction of Cdk5 and cAMP/PKA Signaling in the Mediation of Neuropsychiatric and Neurodegenerative Diseases
  5. Altmetric Badge
    Chapter 4 The PDE4 cAMP-Specific Phosphodiesterases: Targets for Drugs with Antidepressant and Memory-Enhancing Action
  6. Altmetric Badge
    Chapter 5 Phosphodiesterase-4B as a Therapeutic Target for Cognitive Impairment and Obesity-Related Metabolic Diseases
  7. Altmetric Badge
    Chapter 6 From Age-Related Cognitive Decline to Alzheimer’s Disease: A Translational Overview of the Potential Role for Phosphodiesterases
  8. Altmetric Badge
    Chapter 7 The Past, Present, and Future of Phosphodiesterase-4 Modulation for Age-Induced Memory Loss
  9. Altmetric Badge
    Chapter 8 A Role for Phosphodiesterase 11A (PDE11A) in the Formation of Social Memories and the Stabilization of Mood
  10. Altmetric Badge
    Chapter 9 Role of PDE9 in Cognition
  11. Altmetric Badge
    Chapter 10 Regulation of Striatal Neuron Activity by Cyclic Nucleotide Signaling and Phosphodiesterase Inhibition: Implications for the Treatment of Parkinson’s Disease
  12. Altmetric Badge
    Chapter 11 Role of Phosphodiesterases in Huntington’s Disease
  13. Altmetric Badge
    Chapter 12 The Role of Phosphodiesterase-2 in Psychiatric and Neurodegenerative Disorders
  14. Altmetric Badge
    Chapter 13 Phosphodiesterase 1: A Unique Drug Target for Degenerative Diseases and Cognitive Dysfunction
  15. Altmetric Badge
    Chapter 14 PDE Inhibitors for the Treatment of Schizophrenia
  16. Altmetric Badge
    Chapter 15 Targeting Phosphodiesterases in Pharmacotherapy for Substance Dependence
  17. Altmetric Badge
    Chapter 16 Genetic Understanding of Stroke Treatment: Potential Role for Phosphodiesterase Inhibitors
  18. Altmetric Badge
    Chapter 17 A Unique Sub-Pocket for Improvement of Selectivity of Phosphodiesterase Inhibitors in CNS
Attention for Chapter 11: Role of Phosphodiesterases in Huntington’s Disease
Altmetric Badge

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Role of Phosphodiesterases in Huntington’s Disease
Chapter number 11
Book title
Phosphodiesterases: CNS Functions and Diseases
Published in
Advances in neurobiology, January 2017
DOI 10.1007/978-3-319-58811-7_11
Pubmed ID
Book ISBNs
978-3-31-958809-4, 978-3-31-958811-7
Authors

Francesca R. Fusco, Emanuela Paldino

Abstract

Huntington's disease (HD) is an autosomal-dominant rare inherited neurodegenerative disease characterized by a wide variety of symptoms encompassing movement, cognition and behaviour. The cause of the disease is a genetic mutation in the huntingtin protein. The mutation leads to an unstable CAG expansion, translated into a polyglutamine domain within the disease protein. Indeed, huntingtin has a CAG/polyglutamine expansion in the range of 6-39 units in normal individuals, whereas it reaches 39-180 units in HD patients. Mutant huntingtin interacts with and impairs the function of a number of transcription factors. Indeed, the expression and function of cAMP response element-binding protein (CREB) and the brain-derived neurotrophic factor (BDNF) are severely affected in HD. Drugs targeting CREB loss of function and BDNF decrease have been considered as powerful tools to treat HD. Recently, cyclic nucleotide phosphodiesterase (PDE) inhibitors have been shown to reduce striatal and cortical degeneration in transgenic mouse model of HD. The neuroprotective effect is due to the competency of PDE4, 5 and 10 inhibitors to positively modulate CREB and BDNF protein levels, both in striatum and cortex in HD models. In this chapter, we will summarize the data supporting the use of PDE inhibitors as a therapeutic approach to fight HD, deepening the possible mechanisms of action underlying these effects.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 19%
Student > Bachelor 4 15%
Researcher 4 15%
Student > Ph. D. Student 4 15%
Librarian 1 4%
Other 2 8%
Unknown 6 23%
Readers by discipline Count As %
Neuroscience 4 15%
Medicine and Dentistry 4 15%
Biochemistry, Genetics and Molecular Biology 3 12%
Agricultural and Biological Sciences 2 8%
Psychology 2 8%
Other 4 15%
Unknown 7 27%